969 research outputs found
Resonance energy transfer: The unified theory revisited
Resonanceenergy transfer (RET) is the principal mechanism for the intermolecular or intramolecular redistribution of electronic energy following molecular excitation. In terms of fundamental quantum interactions, the process is properly described in terms of a virtual photon transit between the pre-excited donor and a lower energy (usually ground-state) acceptor. The detailed quantum amplitude for RET is calculated by molecular quantum electrodynamical techniques with the observable, the transfer rate, derived via application of the Fermi golden rule. In the treatment reported here, recently devised state-sequence techniques and a novel calculational protocol is applied to RET and shown to circumvent problems associated with the usual method. The second-rank tensor describing virtual photon behavior evolves from a Green’s function solution to the Helmholtz equation, and special functions are employed to realize the coupling tensor. The method is used to derive a new result for energy transfer systems sensitive to both magnetic- and electric-dipole transitions. The ensuing result is compared to that of pure electric-dipole–electric-dipole coupling and is analyzed with regard to acceptable transfer separations. Systems are proposed where the electric-dipole–magnetic-dipole term is the leading contribution to the overall rate
Organization of Cellular Receptors into a Nanoscale Junction during HIV-1 Adhesion
The fusion of the human immunodeficiency virus type 1 (HIV-1) with its host cell is the target for new antiretroviral therapies. Viral particles interact with the flexible plasma membrane via viral surface protein gp120 which binds its primary cellular receptor CD4 and subsequently the coreceptor CCR5. However, whether and how these receptors become organized at the adhesive junction between cell and virion are unknown. Here, stochastic modeling predicts that, regarding binding to gp120, cellular receptors CD4 and CCR5 form an organized, ring-like, nanoscale structure beneath the virion, which locally deforms the plasma membrane. This organized adhesive junction between cell and virion, which we name the viral junction, is reminiscent of the well-characterized immunological synapse, albeit at much smaller length scales. The formation of an organized viral junction under multiple physiopathologically relevant conditions may represent a novel intermediate step in productive infection
Impact of Periodic Unsteadiness on Performance and Heat Load in Axial Flow Turbomachines
Results of an analytical and experimental investigation, directed at the understanding of the impact of periodic unsteadiness on the time-averaged flows in axial flow turbomachines, are presented. Analysis of available experimental data, from a large-scale rotating rig (LSRR) (low speed rig), shows that in the time-averaged axisymmetric equations the magnitude of the terms representing the effect of periodic unsteadiness (deterministic stresses) are as large or larger than those due to random unsteadiness (turbulence). Numerical experiments, conducted to highlight physical mechanisms associated with the migration of combustor generated hot-streaks in turbine rotors, indicated that the effect can be simulated by accounting for deterministic stress like terms in the time-averaged mass and energy conservation equations. The experimental portion of this program shows that the aerodynamic loss for the second stator in a 1-1/2 stage turbine are influenced by the axial spacing between the second stator leading edge and the rotor trailing edge. However, the axial spacing has little impact on the heat transfer coefficient. These performance changes are believed to be associated with the change in deterministic stress at the inlet to the second stator. Data were also acquired to quantify the impact of indexing the first stator relative to the second stator. For the range of parameters examined, this effect was found to be of the same order as the effect of axial spacing
The landscape ecological impact of afforestation on the British uplands and some initiatives to restore native woodland cover
The majority of forest cover in the British Uplands had been lost by the beginning of the
Nineteenth Century, because of felling followed by overgrazing by sheep and deer. The
situation remained unchanged until a government policy of afforestation, mainly by exotic
conifers, after the First World War up to the present day. This paper analyses the distribution
of these predominantly coniferous plantations, and shows how they occupy specific parts of
upland landscapes in different zones throughout Britain. Whilst some landscapes are
dominated by these new forests, elsewhere the blocks of trees are more localised. Although
these forests virtually eliminate native ground vegetation, except in rides and unplanted land,
the major negative impacts are at the landscape level. For example, drainage systems are
altered and ancient cultural landscape patterns are destroyed. These impacts are summarised
and possible ways of amelioration are discussed. By contrast, in recent years, a series of
projects have been set up to restore native forest cover, as opposed to the extensive
plantations of exotic species. Accordingly, the paper then provides three examples of such
initiatives designed to restore native forests to otherwise bare landscapes, as well as setting
them into a policy context. Whilst such projects cover a limited proportion of the British
Uplands they nevertheless restore forest to landscapes at a local level
Iatrogenic Spinal Cord Injury Resulting From Cervical Spine Surgery.
STUDY DESIGN: Retrospective cohort study of prospectively collected data.
OBJECTIVE: To examine the incidence of iatrogenic spinal cord injury following elective cervical spine surgery.
METHODS: A retrospective multicenter case series study involving 21 high-volume surgical centers from the AOSpine North America Clinical Research Network was conducted. Medical records for 17 625 patients who received cervical spine surgery (levels from C2 to C7) between January 1, 2005, and December 31, 2011, were reviewed to identify occurrence of iatrogenic spinal cord injury.
RESULTS: In total, 3 cases of iatrogenic spinal cord injury following cervical spine surgery were identified. Institutional incidence rates ranged from 0.0% to 0.24%. Of the 3 patients with quadriplegia, one underwent anterior-only surgery with 2-level cervical corpectomy, one underwent anterior surgery with corpectomy in addition to posterior surgery, and one underwent posterior decompression and fusion surgery alone. One patient had complete neurologic recovery, one partially recovered, and one did not recover motor function.
CONCLUSION: Iatrogenic spinal cord injury following cervical spine surgery is a rare and devastating adverse event. No standard protocol exists that can guarantee prevention of this complication, and there is a lack of consensus regarding evaluation and treatment when it does occur. Emergent imaging with magnetic resonance imaging or computed tomography myelography to evaluate for compressive etiology or malpositioned instrumentation and avoidance of hypotension should be performed in cases of intraoperative and postoperative spinal cord injury
Characterization of the TRBP domain required for Dicer interaction and function in RNA interference
<p>Abstract</p> <p>Background</p> <p>Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC). While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP) that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain.</p> <p>Results</p> <p>We show that the TRBP binding site in Dicer is a 165 amino acid (aa) region located between the ATPase and the helicase domains. The binding site in TRBP is a 69 aa domain, called C4, located at the C-terminal end of TRBP. The TRBP1 and TRBP2 isoforms, but not TRBPs lacking the C4 site (TRBPsΔC4), co-immunoprecipitated with Dicer. The C4 domain is therefore necessary to bind Dicer, irrespective of the presence of RNA. Immunofluorescence shows that while full-length TRBPs colocalize with Dicer, TRBPsΔC4 do not. <it>tarbp2</it><sup>-/- </sup>cells, which do not express TRBP, do not support RNA interference (RNAi) mediated by short hairpin or micro RNAs against EGFP. Both TRBPs, but not TRBPsΔC4, were able to rescue RNAi function. In human cells with low RNAi activity, addition of TRBP1 or 2, but not TRBPsΔC4, rescued RNAi function.</p> <p>Conclusion</p> <p>The mapping of the interaction sites between TRBP and Dicer show unique domains that are required for their binding. Since TRBPsΔC4 do not interact or colocalize with Dicer, we suggest that TRBP and Dicer, both dsRBPs, do not interact through bound dsRNA. TRBPs, but not TRBPsΔC4, rescue RNAi activity in RNAi-compromised cells, indicating that the binding of Dicer to TRBP is critical for RNAi function.</p
Signs of a vector's adaptive choice: on the evasion of infectious hosts and parasite-induced mortality
Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non-infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue.
We used the natural associations between a malaria-like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild-caught bats, serving as an approximation of realised feeding preference of the bat flies.
Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high.
The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions
An Experimental Evaluation of Rate Adaptation for Multi-Antenna Systems
Abstract—Increasingly wireless networks use multi-antenna nodes as in IEEE 802.11n and 802.16. The Physical layer (PHY) in such systems may use the antennas to provide multiple streams of data (spatial multiplexing) or to increase the robustness of fewer streams. These physical layers also provide support for sending packets at different rates by changing the modulation and coding of transmissions. Rate adaptation is the problem of choosing the best transmission mode for the current channel and in these systems requires choosing both the level of spatial multiplexing and the modulation and coding. Hydra is an experimental wireless network node prototype in which both the MAC and PHY are highly programmable. Hydra’s PHY is essentially the 802.11n PHY, and currently supports two antennas and the same modulations and codings as 802.11n. Because of limitations of our hardware platform, th
- …