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FOREWORD

This program is a research project, funded by the National Aeronautics and Space Administration-Lewis

Research Center (NASA-LeRC), to investigate the impact of periodic unsteadiness on performance and heat load

in axial flow turbomachines. The overall project is under the direction of Mr. James W. Gauntner, the program

manager for NASA-LcRC, and Dr. John J. Adamczyk, the technical monitor for NASA-LeRC. The program was
conducted at Pratt & Whitney (P&W) under the direction of Dr. O.E Sharma, the program manager, and Mr. Gary

M. Stetson, the principal investigator.
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SYMBOLS/NOMENCLATURE

Cps

Cg

C_

Cr

Ct

Cx

r

x

Y

Static pressure coefficient (Pti - Ps)/q 2 or (Pti - Ps)/0.5p Urn2

Total pressure coefficient (Pti - Pt)/0-5p Urn2

Relative total pressure coefficient (Pti- Ptr)/0-5p Urn2

Velocity in radial direction

Velocity in tangential direction

Velocity in axial direction

Radius from center line

Axial distance

Tangential distance (Normal to X in Cartesian system)

0

O/s

Fr

Ft

Fx

Yaw angle (tan ct = Cx/Ct)

phi angle (tan _ = Cr/Cx)

Tangential angular displacement

Momentum thickness divided by suction surface length of airfoil

Radial body force

Tangential body force

Axial body force

Cx'Cx'

Ct'Ct'
Cr'Cr'
Cx'Ct'
Cx'Cr'
Ct'Cr'

'_tr

'_tx

'_xr

Axial Velocity Normal Stress
Tangential Velocity Normal Stress
Radial Velocity Normal Stress

Axial-Tangential Velocity Shear Stress
Axial-Radial Velocity Shear Stress
Tangential-Radial Velocity Shear Stress

Tangential-radial shear stress

Tangential-axial shear stress

Axial-radial shear stress

Random, Temporal or
Spatial, Depending on
Averaging Noted by

Superscripts

8711_.edr
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Ptr
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Smax

Um
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SYMBOLS/NOMENCLATURE(CONTINUED)

Heat transfer coefficient

Density

Viscosity

Static pressure

Total pressure

Rig inlet total pressure

Relative total pressure

Row exit dynamic head

Suction surface length from leading edge of airfoil

Airfoil height (span)

Suction surface length of airfoil

Rotational speed at the mean radius of the rotor

Turbulent viscosity

Eddy viscosity

Apparent viscosity

Entropy -= LN[P/P i x (pi/p) _ ]

Vx2 + Va + Vr2

VxV t + VxV r + VtV r

2
Vx2 (turbulent) :cwcx'/c_

Vx2 (temporal) =cx'ci/cx

Vx2 (spatial) = cx.cx===_./_2

_2

Vt2 (turbulent) =ct'ct'/cx

V a (temporal) = c:c,'/c_

2
Vo. (spatial) = c,'ct'/P-x

2
Vr2 (turbulent) =Cr'Cr'/Cx

2
Vr2 (temporal) = Cr"Cr' / Cx

/

Vr2 (spatial) = Cr'O.'/_ 2
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SYMBOLS/NOMENCLATURE(CONTINUED)

VxV t(turbulent)=cx'ct/cx

2
VxV t (temporal) =cx'ct'/cx

VxV t (spatial)-Cx'Ct'/_-x 2

b2
VxV r (turbulen0 =cx'cr'/Cx

_2

VxVr (temporal) =c,,'o.'/c._

VxVr (spatial) =c,:c,.,/_ 2

2
VtV r (turbulent) =c:'c,.'/cx

_2

VtV r (temporal)=Ct'Cr'/Cx

VtV r (spatial) =ct'cr'/_ 2

St =

h=

Pe "-

vE=

%=

Stanton Number = h/peVcC p

Heat transfer coefficient

Airfoil exit plane -- density

Airfoil exit plane B velocity

Specific heat ratio

Specific heat ratio

Superscripts

m

()

()

m

()

()'

Time-average random

Time-average temporal

Tmae-average spatial

Instantaneous
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SYMBOLS/NOMENCLATURE(CONTINUED)

Derivatives

ac__._)
_x

First Partial Derivative with 'x' (in Cartesian and cylindrical coordinate system)

a( )
_r

First Partial Derivative with 'r' (in cylindrical coordinate system)

aj.2
_y

First Partial Derivative with 'y' (inCartesian coordinate system)

Second Partial Derivative with 'x'

a2()
a2

Second Partial Derivative with 'r'

Vlli



The nomenclature used in Appendix C, Large-Scale Rotating Rig 1-1/2 Stage Rig Baseline

Data, is listed in Table i. For accessibility, this listing of nomenclature is also provided in

Appendix C.

Table i. Nomenclature for Appendix C

Nomenclature Defuation

CP

CFrABSM

CPSA

CPIREI2d

CPROTM

CTANM

CTANA

ClXYr

CTOTA

CRA

CXA

c_

Cx/U m

P

1'0

PC.SPAN

PHIABSA

PHIRELA

PrREL

PI'ROT

Q_o¢,_

OUM

S

Pressure coe_eient (P0" r')/QuM

Mass-averaged absolute total poressure coefficient (P0" lrI'ABS)/QuM

Area-averaged static pressure eoetticient= (P0" PSA)/QuM

Mass-averagedrelativetotalpressureeoeflieient = (P0" FIREL)/QuM

Mass-averaged rotary total pre_ure coefficient = 0P0 - IrrROT)/QuM

Mass-averaged absolute tangential velocity ratio = CTANM/U m

Area-averaged absolute tangential velocity ratio = CTANA/U m

Total absolute velocity

Mass-averaged absolute total velocity ratio = CTOT/U m

_avevaged absolute total velocity ratio = CTOT/U m

Area.averaged radial velocity ratio = CR/U m

Area-averaged axial velocity ratio = CX/U m

Rig inlet average midspan axial flow velocity, ft/sec

Rig flow coefficient

Static pressure, psia

Rig inlet total pressure, psia

Percent of airfoil span = OR- Rhub)/(Rtip-Rhub)* 100

Area-averaged absolute pitch angle, deg

Area-averaged relative pitch angle, deg

Relative total presstne = fffIREL = P+Qlocal)

Rotary total pressure = (IrI_OT=_)

1/2 P0CTOT2

Dynamic pressure = 1/200Um 2, psia

Airfoil span, inches
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Table i. Nomenclature for Appendix C (Continued)

Nome_laturt Defu_ion

STA1

STA2

STA3

TNCTMCXA

TNWTMCXA

Um

WTANA

WTANM

WTOTA

WTOTM

YAWABSA

YAWRELA

X

XI

X2

P0

r

Station 1 - IV exit plane

Station 2 - 1B exit plane

Station 3 - 2V exit plane

Area averaged absolute yaw angle = tan"I(CTANM/CXA)

Area averaged relative yaw angle = tan" I(WTANM/CXA)

Rotor midspan wheel speed, ft/sec

Axea-averaged relative tangential velocity ratio = WTANAJ U m

Mass-averaged relative tangential velocity ratio = WTANM/U m

Area-averaged relative total velocity ratio = WTOTA/U m

Mass-averaged relative total velocity ratio = WTOTM/U m

Area-averaged absolute yaw angle, deg

Area-averaged relative yaw angle, deg

Airfoil axial location from leading edge, inches

Axial distance from leading edge of rotor to trailing edge of first stator, inches

Axial distance from trailing edge of mto¢ to leading edge of second stator, inches

Rig inlet density. $1ugs/ft 3

Radius, inches
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1. SUMMARY

Flows in advanced axial flow turbines are highly unsteady and three-dimensional (3-D) due to the relative

movement of adjacent airfoil rows, large turnings, and low-aspect ratios. The effect of the unsteadiness is not well

understood; therefore, unsteadiness is not explicitly accounted for in the aerodynamic design process, except

through empirical correlations. The main goal of the present investigation was to quantify the impact of periodic
unsteadiness on the loss and heat load generation mechanisms in an axial flow turbine environment. Five tasks

were identified to complete this investigation, which was performed in the following three phases:

• Phase I -- Consisted of analyzing unsteady data, previously acquired in a 1 1/2-stage, large-scale, axial
flow turbine, to determine essential features of periodic unsteady flows and associated terms (deterministic

stresses) that needed to be accounted for in the multistage flow prediction systems.

• Phase II-- Consisted of performing supporting analyses using computational fluid dynamics (CFD) codes

to determine: (1) fimitations of their flow prediction capabilities and new modeling requirements, and (2)

the appropriate experimental program needed to assess the impact of periodic unsteadiness on the time-
averaged flows in a 1 1/2-stage turbine rig.

• Phase III -- Consisted of experimental quantification of the effect of periodic unsteadiness on the losses

and heat loads in the turbine rig environment.

Results from this investigation indicated that the magnitude of the terms representing periodic unsteadiness
(deterministic stresses) were as large or larger than those representing the random unsteadiness (turbulence) at the

inlet to every airfoil row, except the first airfoil row in a multistage turbine. The experimental data acquired during

this program also showed that the aerodynamic performance of an airfoil row was affected by spacing between
adjacent airfoil rows, indicating the importance of deterministic stresses on the loss generation. A demonstration of

the impact of deterministic stress terms was depicted through numerical experiments, which were conducted to

investigate the phenomenon of combustor-generated hot streak migration through turbine rotors. This effect can be
modeled through deterministic stress-like terms in continuity and energy equations.
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2. INTRODUCTION

The unsteady effects from rotor-stator interaction in multirow turbomachines have been qualitatively known

for many years. However, robust, readily applicable methods to quantify the phenomena of interest were not devel-

oped until recently. A principal driver for these methods has been the trend to lower aspect ratio and increase Mach

numbers, two design tendencies of modern aircraft engines. This trend, coupled with increases in computer power,

has led to the development of computational procedures for examining basic issues concerning rotor-stator flow
interactions.

A rigorous conceptual framework for addressing these effects has been proposed and applied by Adamczyk

[1]. In this approach, unsteady terms associated with blade periodicity were separated from unsteady effects not

linked to blade passing. The effect of the former on the time mean flowfield was characterized by deterministic

stresses, which appeared as time averages of the quadratic products of the periodic fluctuations. Important con-

cerns dealt with the magnitudes and distributions of these deterministic stresses, and, even more relevantly, their
effect on the overall flowfield, compared to non-blade periodic unsteady phenomena (e.g., turbulence or vortex
shedding).

Pratt & Whitney (P&W) was interested in unsteady flow as it related to impacting the eventual product, the tur-

bomachinery in an aircraft gas turbine engine, or other similar device. Understanding unsteady flow, i.e., sorting
out the many different phenomena, was a necessary part of the process, but not the complete process. To affect the

design process in a substantial manner, it was crucial to have the capability to implement this understanding into
improved design procedures. These procedures needed to specify how the design of blades and vanes should be

changed. Therefore, P&W sought ways of translating the increased understanding into the design process, through

procedures that contained sounder, more physically-based flow descriptions and rational ways to assess, account

for, and design for time mean effects of flow unsteadiness. Modeling procedures of this type were useful because

current unsteady flow computations are too time consuming to be used as part of routine design procedure.

Experimental information was presented concerning time mean effects of unsteady flow in an axial turbine on

losses and heat transfer. This included the influence of axial spacing between rows, and changes in performance

due to the clocking (indexing) of one row of stators relative to another. Comparisons between steady-state compu-
tations and the time-averaged unsteady analyses were also shown to demonstrate that unsteady flow had a clear and

significant time mean effect. Finally, P&W described instances in which the use of insight about unsteady flow had
an impact on the design of actual engine hardware.
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3. BACKGROUND

The technical content of this program has undergone considerable evolution since its initiation. These evolu-

tionary changes have provided insight into the basis for strategies that address unsteady flow phenomena. A critical

factor in this evolution has been the rapidity with which three-dimensional (3-D) unsteady flow computational pro-

cedures have become reliable enough for numerical experiments. At the start of the program (1990), Pratt & Whit-

ney (P&W) anticipated that the most effective approach would be to use available detailed experimental data on the

deterministic and random (turbulent) stresses. This was true, although the data set was not complete enough to per-

mit the resolution of all stress terms in the equations of motion. During the execution of the program, however, this

situation changed as the capability to capture unsteady flow phenomena through computations increased. The cur-

rent position is that it is more useful to compute the deterministic stress terms (i.e., to use the results of the
unsteady flow calculations as data) in developing approaches to implement the time-averaged effect of unsteady

flows. When this is performed in a consistent manner, the time-averaged effect is well represented. The experimen-

tal data thus play a smaller role in the development of the models than what was initially envisioned. As an exam-

ple, early emphasis was on examining approaches to developing models that allowed closure of the system of

equations that contained deterministic stresses. (The nondeterministic stress terms, which would arise from turbu-
lence, still need to be modeled.) This is presently of less concern, and the approach would be to compute these

terms.

A further factor that shaped the evolution concerns P&W's assessment of the importance of unsteady flow

effects, including deterministic stresses, on overall figures of merit for turbomachinery performance, such as effi-
ciency and heat load. Time-averaged manifestations of unsteady flow have nonlinear effects, i.e., involving qua-

dratic or higher products of the perturbations from the time mean flow. If these perturbations have a magnitude of

the order of ten percent of the mean, which is a reasonably large unsteadiness, the nonlinearity would be expected

to be of the order of one percent. In the past, therefore, many unsteady effects have been too small to have a signif-

icant impact. The two design trends mentioned in Section 2, however, have resulted in increased levels of unsteady

perturbations and substantially larger time-averaged values. For example, this was observed in turbine performance

that was measured in engine tests. In addition, increased attention is now being given to efficiency changes on the

order of one percent, so this level has assumed greater significance.

For these reasons, there is a desire to incorporate information concerning these flow effects into the design pro-
cess, so that hardware could be affected. As a result, the research has also examined the development of the meth-

odology by which the design process could be effectively conducted. The results have been extremely encouraging,

and (under internal P&W support) the technology has been applied to compressors as well as turbines. This was not

explicitly envisioned in the initial formulation. Specific applications that relate to this project ate described in

detail below; the unsteady flow concepts associated with the present program have provided a springboard to new

designs.

Two other aspects connected with specific items initially singled out to be addressed were also contributors to

the change in emphasis. The first aspect was the realization of the strong effect of inlet boundary conditions on the

angle profile at the exit of a blade row. This was found initially using a heuristic approach, and was then verified

computationally. The implication was that the discrepancy between computations and experiment, as far as second

stator exit flow angle, could be directly traced to improper modeling of the second stator inlet profile.

The second aspect was the detailed scrutiny of previous heat transfer data. These data showed a heat transfer

rate on the suction surface that could not be explained using current predictive measures. These data appeared to

indicate there were phenomena occurring that were not captured by the state-of-the-art models. The goal was thus

to investigate what these might be and how they might be modeled. Repeats of the experiments with new test hard-

ware, however, indicated that: (1) previous data were in error, and (2) the behavior on the suction side of the second

vane was in accordance with predictions. Therefore, this point was not addressed.

After addressing the above two items, efforts were directed toward conducting numerical and physical experi-

ments in flow situations, where time mean effects of periodic unsteadiness had yielded results that could not be



explained on the basis of conventional steady flow techniques. In addition to providing insight into physical mech-

anisms governing the levels of heat loads and losses in turbine airfoil rows in a multistage environment, the exper-
iments were expected to provide guidance in the design of next generation of turbomachines. The main activities

were divided into analytical experiments, physical experiments, and design of actual turbine hardware.

Numerical Experiments _ These experiments were directed toward simulating the migration of burner

generated hot streaks in two model turbines. Unsteady, multistage Euler- and Reynolds-averaged Navier-

Stokes (RANS) codes were used to conduct the numerical simulations.

Physical Experiments _ These experiments quantified the effect of the inlet deterministic stresses on the
airfoil row loss and heat transfer. These tests were conducted by altering the physical spacing between

adjacent airfoil rows.

These experiments also investigated the impact of indexing (clocking) of the second stator airfoil relative
to a first airfoil on the performance and heat transfer coefficient of the second stator.

• Designs of Actual Turbine Hardware D Designs were based on the experiments discussed above during

the course of the contract (using internal P&W funding).

The remainder of this report is organized to discuss the detailed work conducted as part of this contract or sup-

porting evidence provided by P&W-funded programs.

Analysis of the unsteady flow data, previously acquired by P&W from experiments conducted in the United

Technologies Research Laboratory (UTRC) large-scale rotating rig (LSRR), is discussed in Section 4. The relative

magnitude of terms, which represent the periodic (deterministic) and random (turbulence) unsteadiness, are com-

pared in Section 4. This comparison demonstrates the need to model the effects of periodic unsteadiness in multi-

stage turbines.

Results obtained from numerical experiments conducted by using multistage 3-D steady and unsteady, Euler

and RANS codes, are discussed in Section 5. The importance of accurate specification of boundary conditions on

the prediction of flow features for an airfoil row is highlighted. Discussions on the appropriateness of steady and

unsteady Euler codes, together with a strategy to account for the adverse effects of combustur generated hot streaks

on the turbine performance and heat load characteristics, are provided in Section 5.

Results obtained from the initial phase of the experimental program conducted in the LrI'RC LSRR are dis-
cussed in Section 6. The detailed aerodynamic and heat transfer data acquired in the rig, and the comparisons with

simulations from recently developed, multistage, 3-D RANS codes are also discussed.

Results from the physical experiments conducted in this program are discussed in Section 7, including the

impact of stator-to-stator clocking on performance and heat load characteristics of downstream stators. Also dis-
cussed in Section 7 are the results obtained from altering the spacing between adjacent airfoil rows. This can be

used to quantify the impact of periodic unsteadiness (deterministic stresses) on the performance of an airfoil row in
a multirow environment.

The impact of the work, which was conducted during the present contract, on the evolution of design processes

and the actual engine hardware, is discussed in Section 8. The specific items addressed are the impact on turbine

performance and heat loads, and compressor efficiency and stall margin. Conclusions and recommendations for

future work are provided in Section 9. References cited throughout Sections 1 through 9 are listed in Section 10.

Appendix A discusses the three approaches used to investigate whether deterministic stresses influence the perfor-
mance of the second stator in the LSRR configuration. Appendix B describes the facility at United Technologies
Research Center that was used for the LSRR. A comprehensive data set is summarized in Appendix C. A synop-

sis of the proposed program is provided in Appendix D.
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4. EVALUATION OF UNSTEADY DATA

This section summarizes the evaluation of the high-response data acquired prior to this contract in the United

Technologies Research Center (UTRC) large-scale rotating rig (LSRR). The facility is a large-scale, low-speed fig

that allows detailed measurement of the aerodynamic flowfield. The objective of the evaluation was to ascertain

the relative magnitudes of the random and periodic unsteady flowfield components, and their relation to steady

computational fluid dynamics (CFD) analysis tools. This section provides a brief background of Pratt & Whitney's

(P&W's) experience in turbine unsteady flows, and is followed by a discussion of the measured results and sum-

mary.

4.1 BACKGROUND OF UNITED TECHNOLOGIES CORPORATION EXPERIENCE

United Technologies Corporation (UTC), specifically P&W and UTRC, has been acquiring unsteady aerody-

namic data for many years. These data include unsteady measurements in cascades, high- and low-pressure turbine

(HFF and LPT) rigs, and in the actual engine environment. United Technologies Corporation has: (1) determined

boundary layer transition using surface hot films, (2) measured unsteady total and static pressures using close-cou-

pled, high-response transducers and infinite tube probes (ITP), and (3) measured unsteady flowfields using three-

element hot wires, high-response five-hole probes, and/or laser doppler velocimetry (LDV). The data, however,

have never been analyzed in a manner consistent with the average-passage equations described by Adamczyk [1].
Data (previously acquired in the UTRC LSRR) were processed consistent with these equations to assist in deter-

mining the importance of additional terms, identified by Adamczyk, relative to turbulence (random unsteady flow).

4.1.1 Previous Experiments

From 1977-1978, the LSRR (Figure 1) at UTRC was used to acquire unsteady flowfield data in a low-aspect

ratio, 1 1/2-stage turbine rig (Sharma et al., 1984 [2]). Computer resources (at that time) limited the amount of data

that could be processed. As computer resources became more available, visualization of unsteady flow measure-

ments became possible, and the data were analyzed to study the time dependence of the rotor flowfield.

The UTRC LSRR rig has 22 fast stators, 28 rotor blades, and 28 second stators. Two, 180 degree, annular seg-

ments, exist at any given snapshot in time (rotor position), comprised of 11 fast stators, 14 rotor blades, and 14 sec-

ond stators, where the flow patterns are repeated in each annular segment. Each rotor blade of a given annular
segment will have a different position, relative to a nearby fLrSt stator. Therefore, if the rotor flowfield is influenced

by the fast stator airfoil row, each rotor blade passage of this annular segment will have different flow characteris-
tics.

To determine if there were an unsteady effect of the first stator on the rotor in the LSRR, a total pressure con-
tour at the rotor exit (for four rotor passages) was created for one snapshot in time. To assist with orientation, the

location of the data plane is graphically depicted in Figure 2 for an unsteady three-dimensional (3-D) numerical

calculation. The experimental results of the unsteady relative pressures show that (Figure 3) at an instant in time,

four rotor passages have differences from 0 to 80 percent span. These distortions coincide with rotor/stator passing
frequency, and therefore, the rotor flowfleld is being affected by the upstream stator. To better understand the influ-

ence of this unsteady flow phenomena, a detailed evaluation of the unsteady data previously acquired in the UTRC
LSRR was undertaken as a part of the present investigation.

4.1.2 Description of Flow Stresses

The governing equations, pertinent to this evaluation, are the time and spatially-averaged incompressible

radial, tangential, and axial momentum equations (Equations 1, 2, and 3) per Adamczyk [1]. In addition to the Rey-
nolds stresses typically associated with random unsteady flow features, there are additional terms in the momentum

equations. These terms appear as axial, tangential, or radial gradients of the following parameters: Cx'Cx', Ct'Ct',

Cr'Cr', Cx'Cr' Cx'Ct', and Ct'Cr'. These terms can be identified, as outlined by Adamczyk [1], as normal and shear
stresses.
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Cx'Cx' }

Ct'Ct" }

Cr'Cr' }

Normal Stresses

Cx'Cr' }

Cx'Ct' }

Ct'Cr' }

Shear Stresses

Cx'Cx' = Axial Intensity

Cr'Cr' = Radial Intensity

Ct'Ct' = Tangential Intensity

Cx'Ct" = Axial-Tangential Shear Stress
Cx'Cr' = Axial-Radial Shear Stress

Ct'Cr' = Tangential-Radial Shear Stress.

[Equation 3]

The detailed evaluation of the unsteady data focuses on the assessment of these additional stresses (spatial,
temporal) with respect to their relative importance to turbulence in the UTRC LSRR.

4.2 ANALYSIS OF UNSTEADY DATA

Random and periodic flow behavior are depicted in Figure 4. This figure schematically represents a velocity

distribution (or time history) over one period (i.e., rotor blade passing). The implication is that a velocity distribu-

tion aft of an airfoil row is composed of mean, periodic (rotor passing frequency), and random components.



To assess the relative importance of the random and periodic unsteadiness on performance, a first step is to

compare the relative magnitudes of the random unsteadiness (turbulence) with the periodic unsteadiness (temporal

and spatial) from the unsteady data measured in the LSRR facility. The data will be presented as: (1) gap-averaged
stresses (random and periodic) versus span, and (2) contour plots for the first stator exit (rotor inlet) (Station 1),

rotor exit (second stator inlet) (Station 2), and the second stator exit (Station 3) measurement planes.

The random stresses are referred to as turbulent stresses, while the spatial and temporal stresses are called

deterministic stresses. To assist in understanding what these stresses are and how they are determined, Figure 5

depicts velocity and associated stresses as they might appear downstream of an airfoil trailing edge (TE).
Donaldson [3] derives and presents the equations and processing technique used to analyze the actual unsteady

data. As described by Donaldson, numerous time records of data were obtained at each probe position (i.e., each
circumferential and radial coordinate). These were ensemble averaged to obtain mean velocity components and

components of stresses due to unsteady flow. The analytical procedure involved calculations of specific variances
of instantaneous and time-averaged velocity components relative to mean quantities. Although the analysis is

based on statistical algorithms, a conceptual description is provided below.

The random stresses, at each geometrical position, are determined by processing the instantaneous correlation

(CxCx, OCt, CrCr, CxCt, CxCr, CtCr), averaging over time, subtracting off the square of the time-averaged, and

filtering out periodic fluctuations associated with wheel speed/airfoil passing frequency. Temporal stresses

(periodic), at each spatial position, are determined in the same manner as the random, except the random fluctua-
tions are filtered out. The spatial stresses are not associated with time, and only appear when the equations are spa-

tially averaged. These stress terms are determined by obtaining the time-averaged velocities at each spatial position

(radially and circumferentially), averaging over the circumference at one radial position, subtracting off the square

of the circumference-averaged (i.e., Cx'Cx'circ-avg = _xx circ-avg -CxCx circ-local ) [Equation 4].

This analysis was applied to the measured data to obtain the stresses associated with the unsteady flow in the

UTRC LSRR, namely, the random (i.e., turbulent), temporal, and spatial stresses.

Understanding the frame dependency of the deterministic stress is necessary to understand the measured
results and discussed in the following sections. A spatial stress in the absolute frame contributes to the component

of temporal stress in the relative frame, while a spatial stress in the relative frame contributes to the component of

temporal stress in the absolute frame. Therefore, spatial and temporal unsteadiness components are locked to a
given airfoil row. For example, if the first stator exit fiowfield were not influenced by the passing of the rotor, the
fu'st stator exit flowfield would only have random and spatial components of stress, and the first stator exit (abso-

lute frame) spatial stress would be equivalent to the rotor inlet temporal stress. If the rotor does influence the first
stator exit flowfield, then the stator exit would have an additional temporal (i.e., periodic) stress induced by the

rotor. Therefore, the spatial and temporal stresses have reference frame dependencies, while the random (i.e., tur-

bulent) stresses are independent of reference frame.

To assess the possible impact of periodic unsteadiness on aerodynamic loss and heat transfer from the UTRC

LSRR data, it will be assumed that there is an analogy between turbulence and deterministic stress, as described

below.

The first analogy is assuming the magnitude of deterministic stress has a similar influence on boundary layer
transition as free stream turbulence (disturbance). Free stream turbulence, as summarized by Hinze [4], begins to

affect the transition of the boundary layer at magnitudes of 0.2 percent. For a free stream turbulence intensity of 0.5

percent, the transition Reynolds number (REX) is approximately 1 x 106; for a 3 percent free stream turbulence, the

transition Reynolds number is approximately 1 x 105. Assuming a similar impact as free stream turbulence, a mea-

surable effect on airfoil performance is expected for inlet deterministic stress of 3 percent or larger.

The second analogy is comparing the turbulent stress terms with the deterministic stress terms as they appear in

the momentum equations described in Section 4.1.2. This comparison will not provide the importance of turbulent

stresses or deterministic stresses; it will only provide the relative importance. If turbulence and deterministic
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stressesshowthe same magnitudes and gradients as they appear in the equations, then they have the same relative

importance in closure of the equations. Since the axial gradients are not available, the radial gradients of determin-

istic stress will be compared to the turbulent stresses along with absolute magnitudes.

The final analogy assumes that there is an apparent viscosity associated with deterministic stress, which is sim-

ilar to the turbulent viscosity developed using Boussinesq's hypothesis. For example, for a similar two-dimensional

(2-D) incompressible boundary layer, the time-averaged momentum equation takes on the following form:

_--_0C'-x _-_0C-'x 10P-'s 0(v0C-'x Cx'Ct')-if+pax-  -fly- [Equation 5]

Since flow deformation is associated with surface stress, and Cx'Ct' is an additional stress on the fluid, an

assumption is made that Cx'Ct" is proportional to flow deformation, as noted in Equation 6:

I

OCx
Cx'Ct' o_ %"77 [Equation 61

The proportionality constant is called the eddy diffusivity for momentum (Em), or the equation below:

OCx

Cx'Ct' = -_m-_y [Equation 7]

The turbulent dynamic viscosity is then defined as: (gt = pem), and after substitution and rearranging, it is

defined as the following equation:

P Cx'Ct' [Equation 8]
gt = -0/3"-xx/0y

Substituting these assumptions into the 2-D incompressible boundary layer equations and rearranging, the
resulting equation becomes the following:

_---_ _--_0C--x 10Ps 0[v(l+gt'_0C-'x" ]+ -_I_- + p Ox - Oy _'_) _'-j [Equation 9]

This equation shows that the impact of viscosity in the flowfield is enhanced by the ratio of turbulent to molec-
ular viscosity.

By assuming deterministic stress is analogous to turbulent stress, an apparent viscosity can be calculated from

the LSRR data and compared to the turbulent viscosity. The discussion of the evaluation of the unsteady data

focuses on the data acquired at the first stator exit/rotor inlet (Station 1), the rotor exit/second stator inlet (Station
2), and the second stator exit (Station 3).
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4.2.1 Station I -- Absolute Frame (Fimt Stator Exit)

The first stator exit fllowfleld (Figure 6, reproduced from Joslyn, et al. [5]) showed a full span, narrow width

defect in total pressure that represented the stator wake. Secondary flow vortices, situated at approximately 15 and

70 percent spans, were also interpreted from the contours, and the more typical pitch average loss versus span.
These data suggested there will be absolute frame spatial stresses with large radial gradients that will appear as

temporal stresses in the relative frame.

The spanwise distributions of measured stresses at Station 1 were provided in Figures 7 and 8. The temporal

stresses were approximately 0.0, with no radial gradient, indicating that the rotor had little influence on the stator

exit flowfield. These results, in general, indicated that the magnitudes of spatial stresses (the disturbances the rotor

will sense) in this plane were larger than the turbulent stresses. These magnitudes were compared to typical turbu-

lence (Q2), as shown in Figure 7, where the deterministic stress level was twice as large as the turbulent level. The

time-averaged terms that appeared in the momentum equations as magnitudes (Vr2, Vt2, VxV p VtV r) showed that

the deterministic stresses were the same level as the turbulent stress. The radial gradient terms that appeared in the

momentum equations (Vr2, VtV p VxVr), shown in Figures 7 and 8, indicated that turbulent stress gradients were

almost nonexistent, relative to deterministic stress gradients. The locations of the highest levels of the deterministic

stresses and radial gradients coincided with the secondary flow vortices located between 5 and 25, and 55 and 85

percent span. The correlation of the locations of the highest deterministic stresses, and the locations of the second-
ary flow vortices, were significant when comparing the experimental and computed CFD results in Section 5.

4.2.2 Station I m Relative Frame (Rotor Inlet)

The results described above indicated that the rotor had minimal influence on the first stator exit flowfield, as

shown by the first stator exit temporal stress. Therefore, the rotor relative frame inlet temporal stresses (Figures 9

and 10) were essentially the same as the first stator exit spatial stresses. The data indicated that components of the

deterministic stresses (temporal in the relative frame) and their radial gradients, in general, may be important in any
closure models where turbulence is a factor.

4.2.3 Station 2 -- Relative Frame (Rotor Exit)

The total pressure contours and secondary flow vectors of the rotor exit flowfield, as shown in Figure 11

(Joslyn, et al.[5]), depicted a strong secondary flow, as indicated by the time-averaged relative rotary total pressure

contour and velocity vector plots. At the rotor exit, as derived for the relative frame, the total turbulence

(Figure 12) showed that the average turbulence was approximately 20 percent (Q2 = 0.2), as compared to the spa-

tial stress of approximately 10 percent (Q2 = 0.1). As previously discussed, if deterministic stress was analogous to

turbulence, then the level could easily influence transition of the airfoil boundary layer.

Additionally, the magnitudes of the normal turbulent stress, in the equations of motion, were larger than the

deterministic values (Mr2, Vt2), while the turbulence shear was about the same level as deterministic shear (VtV p

VxVr) , as shown in Figures 12 and 13. The radial (spanwise) gradient terms that appeared in the equations of

motion (Vr2, VtV p VxV r) indicate, by inspection, that the deterministic (spatial) terms were the same level as the

turbulent terms.

From both a magnitude and radial gradient perspective, the deterministic stresses were as important as the tur-

bulent stress at the rotor exit plane in obtaining closure of the equations. Finally, the relative frame stress data pre-

sented in Figures 12 and 13 indicated that the deterministic stresses were largest at approximately 30 and 65

percent span, and coincided with the secondary flow vortices indicated by Joslyrl, et ;11.[5].

Contour plots of the data used to obtain the spanwise distributions (Figure 12) of the random and temporal

intensities (Vx2, Vt2, Vr2) are presented in Figure 14. To assist with interpretation of the flowfield, the relative pres-

sure contour plot is also shown. The temporal stress contours for all components are shown in Figures 15 and 16.

These contour plots show that high turbulence levels are present, as expected, in the wake regions, and that the

deterministic temporal stresses are concentrated in the secondary vortex flow regions. Therefore, the turbulent
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stressesarepredominatelyassociatedwiththe wakes, whereas the temporal stresses are predominately due to the

periodic behavior of the secondary flow, which are believed to be associated with the first stator/rotor interaction.

4.2.4 Station 2 -- Absolute Frame (Second Stator Inlet)

The large secondary flow in the rotor (i.e., rotor spatial stresses) implied the temporal stress at the second stator

inlet, in the absolute frame, will be large (Figures 17 and 18). Since the turbulent stresses were frame independent,

the high turbulent stresses (discussed in the rotor exit relative frame data) will be the same for the second stator

inlet absolute frame. The potential influence of the stresses on the flowfield and/or boundary layer was the same as

discussed in Section 4.2.3, except that the spatial stresses at the rotor exit are now the temporal stresses at the sec-

ond stator inlet because of the change of the reference frame. The spatial stress (second stator to second stator dis-

tortion) at the second stator inlet is a combination of the second stator induced distortions, and the first stator

distortions that propagate through the rotor. The first stator distortions, for instance, would be the wake distortions

of the first stator being present at the inlet to second stator. Relative to the other components of stress, the second

stator inlet spatial stresses are quite small, and would imply that these stresses are not as important as the temporal

and turbulent stresses in obtaining closure in the flow modeling of the governing equations.

4.2.5 Station 3 u Absolute Frame (Second Stator Exit)

Based on cascade data and time-averaged rotor data, the second stator exit is expected to have large secondary
flows. However, as shown in Figure 19, the time-averaged exit loss contours and secondary flow vector distribu-

tion indicated only weak hub and tip vortices at 15 and 80 percent span. Two snapshots of total pressure contours

aft of the second stator exit (Figure 20) indicated a rotor blade vortex for some relative rotor positions, but not oth-

ers. Although not shown in Figures 19 and 20, flow animation of the second stator exit indicated the typical sec-
ondary flow structure was never observed aft of a rotor, as would be expected in a typical stationary cascade with

this turning. This lack of typical secondary flow (flow typical in cascade or as shown in rotor) suggests that the

inlet conditions generated by the rotor are impacting the second stator exit flowfield.

The spanwise distributions of stress at the second stator exit are different from the second stator inlet measure-

ment plane (rotor exit). In general, the relative magnitudes of the temporal stresses decreased in level from the inlet

of the second stator to the exit, while the relative magnitudes of the spatial stresses increased. The spatial stress

magnitude is approximately 10 percent (Q2 approximately 0.10), and turbulent stress is 14 percent (Qe approxi-

mately 0.14), as shown in Figure 21. Potentially, the stress could impact the transition of the downstream airfoil

boundary layer. Figures 21 and 22 show the magnitude terms, which appear in the governing equations (Vr2, Vt2,

VxV r, VtVr), have approximately the same magnitude of turbulent and spatial stress terms for VtVr and Vt2. The

Va term is 0.04 higher for turbulence relative to spatial, and VxVrterm is 0.0075 higher for spatial relative to turbulence.

The radial (spanwise) gradients of the terms that appear in the governing equations (V_,, VtV_, VxVr), shown in Figures

21 and 22, indicated that spatial stress gradients are the same order of magnitude as turbulent stress gradients.

Figure 23 shows the average turbulent and temporal stresses plotted versus the axial distance from the LSRR

first to second stator exit. The figure shows that the average temporal stress in the rotor frame is relatively
unchanged from the inlet to exit, while the temporal stress decayed by a factor of 5 from inlet to exit of the second

stator. The average turbulence intensity (Figure 23) increased by a factor of 10 through the rotor and subsequently

decayed by 25 percent through the second stator. From a modeling perspective, the ratio of turbulent stress produc-

tion-to-decay is greater in the rotor airfoil row than in the second stator row (where the average turbulent intensity

decreases) and must be taken into account if and when these terms are required for closure.
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4.3 APPLICATION OF UNSTEADY ANALYSIS TO DEVELOPMENT OF DETERMINISTIC STRESS

MODEL

The importance of the deterministic stresses and how they relate to steady CFD analysis tools is addressed in
this section. Turbulent viscosity concepts are commonly used for computational modeling closure. One way that

the deterministic stress information presented above may be used is to alter the apparent viscosity in the governing

equations. A simple model is derived for comparison with the estimated turbulent viscosity.

A key step in the modeling of these observed effects is resolving the relationship between the deterministic
stresses and the properties of the mean average-passage flow. If an analogy is drawn between the turbulent mixing,

and mixing induced by the periodic unsteadiness, a simple model can be developed. Using the Boussinesq's

hypothesis (shear stress is eddy viscosity times a velocity gradient), the magnitude of an apparent viscosity can be
determined as follows:

Apparent Viscosity = (Deterministic shear stress)/(time-averaged mean flow stress)

The apparent and turbulent viscosities are defined in Equations 10 through 14:

Turbulent Viscosity = lJ.t = I(Cx'Cr') 2 + (Cx'Ct') 2 + (Ct'Cr') z

P _/ 7t;Xt2 + 7txr 2 + 7-t;tr2

[Equation 10]

Apparent Viscosity = ga = ./Cx'Cr' +Cx'Ct' +Ct'Cr

P _ 7tx--t_ + 7txr---_ + 7_tr-'_

[F_xluation 11]

where:

Xxt = t,r-_-_-" +-_-)
[Equation 12]

- (i)C"x igC-r [Equation 13]
xxr = L- -r )

+_.l _cq
7ttr = _,"_'r r 20 r )

[Equation 14]

The spanwise distributions of apparent viscosity (i.e., derived from the measurements of the deterministic

stresses) and the estimated turbulent viscosities for the first stator, rotor, and second stator exit planes are shown in

Figure 24. These apparent and turbulent viscosities, normalized by the molecular viscosity at ambient conditions,

show that for all downstream airfoil rows, the apparent viscosity is larger than the turbulent viscosity.
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4.4 SUMMARY OF ANALYSIS AND EVALUATION OF LARGE-SCALE ROTATING RIG
UNSTEADY DATA

The unsteady data, previously acquired in the UTRC LSRR rig, have been analyzed to assess the magnitudes

of the turbulent and deterministic stresses. The stresses were calculated from the measured data, and presented as

annular contours and spanwise gap-averaged distributions. An apparent viscosity model, simulating the determinis-

tic stresses using gradients of the time-mean flow, was developed. Evaluation of the unsteady data yielded the fol-
lowing conclusions:

• The magnitudes of spanwise deterministic stresses range between 0 and 0.25, and, in general, are larger in
magnitude than the turbulent stresses.

• The radial gradients of the deterministic stresses, as they appear in the equations of motion are, in general,
larger than the gradients of turbulent stresses.

• The turbulent stresses are predominately associated with the airfoil wake region, whereas the deterministic

stresses are predominately associated with flow distortions coinciding with secondary (pressure-driven)
flow structures.

• The average turbulence intensity increases by a factor of 10 through the rotor and subsequently decays by
25 percent through the second stator.

• The average temporal stress and intensity in the rotor frame is relatively unchanged from the inlet to exit.

• The average temporal stress in the absolute frame decays by a factor of 5 through the second stator.

• The secondary flows at the exit of the rotor and second stator are different, although the geometries and
mean flow angles of the two blade rows are almost identical. This indicates that the inlet flow to the second

stator significantly affects the secondary flow in the second stator.

• The apparent viscosity calculated from the deterministic stresses is larger than turbulent viscosity and is
anticipated to impact turbulence modeling in steady CFD codes.
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Figure 9. These Data Indicate That Inlet Normal Temporal Stresses and Their Radial Gradients (Through

Inspection), in General, May Be More Important in a Closure Model Where Turbulence Is a Factor
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Figure 19. Second Stator Exit Loss Contour and Vector Plot Indicate Unexpected Secondary Flow Patterns

(Second Stator Geometry Is Almost Identical to Rotor, and FlowfieM Was Expected To Be Similar to Rotor)
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Figure 20. From Animation of Second Stator Exit Flowfield (Not Shown) as Function of Time (Rotor Position);

(a) and (b) Represent Two Time Steps With Extremes of Rotor Present.

This Figure Shows Rotor Vortex Present (a) and Not Present (b), Indicating That

Second Stator Exit Is Not as Similar to Rotor (Typical) as Might Be Expected
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5. NUMERICAL EXPERIMENTS

Results of numerical simulations, conducted for the United Technologies Research Center (UTRC) large-scale

rotating rig (LSRR) by using steady and unsteady versions of a three-dimensional (3-D), multistage Euler code

developed by Ni [6], are discussed in this section. The main goal of these simulations was to identify unsteady phe-

nomena with effects, if any, that needed to be incorporated into multistage codes to enhance the predictive capabil-
ities.

5.1 THREE-DIMENSIONAL STEADY MULTISTAGE EULER SIMULATIONS

The first set of numerical simulations was conducted by using the steady version of Ni's 3-D, multistage Euler
code. A wall shear force model, similar to the one developed by Denton [7], is used in the code to simulate the

effect of viscous stresses. Tip clearance flows were not included. In this code, 3-D flow is calculated through one

representative airfoil passage for each airfoil row. The flow properties are conserved (momentum, continuity, and

energy) at an interface plane in the circumferential direction (Figure 25) before information is exchanged between
adjacent airfoil rows during each solution iteration. The technique used to transfer flowfield information across the

interface boundary between airfoil rows is classified as average-plane or mixing-plane. This steady code permits
simulation of flow through multistage turbines with minimal computer memory requirements and is used exten-
sively in the turbine design process.

5.1.1 Full-Scale Turbine Flow Simulation

Numerical results from the steady Ni code are compared to the experimental data measured in a full-scale, two-

stage turbine rig, as shown in Figure 26 (a and b). Reasonable agreement between the experimental data and

numerical results indicates that the code can be used to conduct the numerical studies for a subsonic two-stage tur-
bine rig configuration.

5.1.2 Large-Scale Rotating Rig Flow Simulations

Calculations were performed for the 1 l/2-stage turbine configuration of the LSRR. The airfoil loadings are

compared with time-averaged measured data in Figures 27, 28, and 29 for the first stator, rotor, and second stator,

respectively. The good agreement between the calculated and measured loadings indicates that airfoil loadings are

not appreciably affected by unsteadiness for this configuration, and steady computational fluid dynamics (CFD)
codes can be used to estimate airfoil pressure distributions for airfoil rows operating at subsonic flow conditions.

Spanwise distributions of exit gas angles for the three airfoil rows are compared with calculations in Figure 30.
The agreement between the data and calculation is reasonable for the fLrst stator. However, the yaw angles at the

rotor exit, with large secondary flow, show disagreement between the calculations and data, especially in the end-

wall regions. The second stator results show substantial disagreement, across the whole span, between the data and
calculations. This second stator calculated profile appears to be inverted, relative to the data.

The calculated and measured loss profiles, for the first stator and rotor, are also compared and shown in

Figure 30. The figure shows that the wall shear force model in the code provides a reasonable estimate for two-

dimensional (2-D) type losses, as in the midspan of the first stator, but is not adequate for the endwall regions. This
argument is also bolstered by the rotor loss profiles, which show disagreement between the measured and com-

puted losses in the midspan region, where the cross-passage vortices are located. Comparisons of losses in the sec-

ond stator are not shown because the experimental data were not acquired over an integral number of first and
second stator airfoils, and therefore, do not provide representative loss levels.

5.2 THREE-DIMENSIONAL, UNSTEADY, MULTISTAGE, EULER SIMULATIONS

Numerical simulations were conducted by using the unsteady version of Ni's 3-D multistage Euler code, again
with no tip clearance. The grid and wall shear force model for the unsteady version was the same one that was used

in the steady version of the code. The main objective was to quantify the impact of unsteadiness and circumferen-

tial variations on airfoil surface static pressure distributions and exit flow angle profiles.
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5.2.1 Geometry Selection for LSRR

Unsteady simulations of multistage turbomachines, with different numbers of airfoils in each row, require spe-

cial gridding to retain airfoil-to-airfoil distortions as they convect through succeeding airfoil rows. The LSRR tur-
bine rig contains 22 f'wst stators, 28 rotors, and 28 second stators. Computationally, this would require simulation

through an integral number of airfoil passages (11, 14, and 14 in the first stator, rotor, and second stator, respec-

tively) to preserve periodicity in the circumferential direction. Since computer hardware was not available to con-
duct such a large numerical simulation, it was conducted using a 3, 4, 4 airfoil count for the first stator, rotor, and

second stator, respectively. The 3, 4, 4 reduced-set airfoil count is an approximation to the LSRR geometry (it cor-

responds to a complete turbine airfoil count of 21, 28, 28). The first stator was scaled to hold the pitch-to-chord
ratio, Zwieffel load coefficient, and exit gas angle. Since the aerodynamics are almost identical to the original con-

figuration, the importance of unsteadiness can be highlighted with this simulation.

5.2.2 Unsteady Flow Simulation for LSRR

The results from the unsteady simulation, shown in Figure 31, indicate that the time-averaged loadings for all

airfoil rows are the same as calculated by the steady multistage code, except in the rotor tip region. The agreement

between the steady and unsteady airfoil loadings indicates that airfoil loadings are unaffected by unsteadiness, and

can be predicted by steady codes incorporating an average-plane (or a mixing-plane) approach.

The spanwise distributions of exit gas angles for all airfoil rows from the unsteady simulation are compared to
those obtained from the steady multistage in Figure 32. Computed exit gas angle profiles for the first stator show

tittle impact of unsteadiness. The rotor shows some spanwise redistribution, and the second stator angle shows a

flattening when unsteadiness is accounted for. This result indicates that the mixing plane technique accumulates

through the turbines.

5.2.3 Comparisons with LSRR Data for Deterministic Stresses

Computed spatial deterministic stresses from numerical data for the steady multistage flow simulation were

compared to the experimental data at the exit of the first stator and rotor. Results from the unsteady code were sim-
ilar to those from the steady code. These comparisons (Figures 33 through 36) show that the magnitudes of Vx2,

VxV t, and VxV r were poorly estimated for both the rotor and stator. All components of stresses calculated for the

first stator did not compare well with the data, whereas reasonable predictions were obtained for Vr2, Vie and VtV r

profiles at the rotor exit. This indicates that the distortions in axial velocity, generally associated with loss, are not

being calculated, most likely associated with the limitations in the viscous modeling in the code. However, the

large-scale flow features (associated with secondary flow) in the rotor were reasonably well captured in the code,

as would be represented by the spatial stresses (Vr2, Vt2, and VtVr).

The time-averaged average-passage flowiield (yaw angles and entropy) downstream of each airfoil row, com-

puted by using the unsteady code, was compared to results obtained by using the steady code in Figures 37 through

39. These contour plots show that steady and unsteady results were similar for the first stator and rotor. However,
differences in the contour plots were observed for the flow downstream of the second stator. This difference is due

to the existence of larger circumferential variations in flow properties at the inlet to the second stator, in the

unsteady results, compared with the steady flow simulations.

T_me-averaged flow, for a periodic segment, at the inlet and exit of the second stator, is shown in Figure 40.

This figure shows that the inlet angle is periodic with the downstream airfoil count (four repeating contour fea-

tures), while the entropy is periodic with the upstream vane count (three repeating contour features). This results in
a different flowfield for each airfoil passage for the second stator. These contours show that the exit flow angles

vary up to 22 degrees, and entropy varies by 50 percent in the tip, from one second stator passage to another, over

one periodic flowfleid (four downstream stators to three upstream stators). For a two-stage turbine, where there is a
rotor behind the second stator, the rotor will periodically pass through an angle variation of an additional 12

degrees (Figure 39 versus 40). Although this steady/unsteady analysis does not quantify the impact on loss for a

truly periodic boundary versus a representative passage, it will become clear that the periodic boundary is
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extremelyimportantfor combustor-inducedhot streaks. This aperiodic variation in flow and temperature, at the

exit of the first stator, will be shown to affect the performance and heat load characteristics for both the rotor and

second stator. Both aspects of the flowfield are discussed in Section 5.4.

As previously shown, the magnitude of spatial deterministic stress, in general, is not reproduced by the Euler
code. This is associated with the limitations of viscous modeling. The unsteady analysis, however, should indicate

trends of the deterministic stresses not significantly influenced by viscous effects. The experimental data, discussed

in Section 4 (Figure 23), indicated that the magnitude of temporal stress and intensity is approximately the same at

the inlet and exit of the rotor, and decayed across the second stator. Review of the numerical data, obtained from

the unsteady flow simulation, indicates a similar trend. Figure 41 shows the total intensity and shear for four grid

fines through the rotor passage, as follows:

• 1st grid line: suction surface

• 2rid grid line: pressure surface

• 3rd grid fine: 8 percent of the rotor pitch circumferentially offset from the pressure surface

• 4th grid line: 8 percent of the rotor pitch circumferentially offset from the suction surface.

Figure 41 shows that the temporal stress level either remains about constant through the passage, or enhances

before decaying back to approximately the inlet levels. For the rotor, the inlet and exit levels are approximately the

same and are consistent with measured data (shown in Figure 23).

The numerical results for the second stator are shown in Figure 42 for four grid fines through the stator passage
as follows:

• 1st grid line: suction surface

• 2nd grid line: pressure surface

• 3rd grid fine: 8 percent of the stator pitch circumferentially offset from the pressure surface

• 4th grid line: 8 percent of the stator pitch circumferentially offset from the suction surface.

This result shows, in general, that the temporal stress decays significantly from the inlet to exit of the second

stator, which is the same trend observed in the data in Figure 23.

This results suggests that the temporal stress distribution may be an inviscid effect and that unsteady Euler

codes possibly can be used to generate distributions of deterministic stresses, which can be used in steady multi-

stage Reynold-Averaged Navier-Stokes (RANS) codes to simulate the effects of unsteady flow.

In an average-passage (steady) analysis, the deterministic stresses are created through circumferential averag-

ing. The downstream propagation and/or segregation of the stress is currently undefined for a steady solution. The

results from unsteady analysis indicate that even without the absolute magnitudes of the deterministic stress cap-

tured by the code, the temporal stress shows higher levels in specific regions of the rotor and second stator passage.

Figures 43 and 44 show that these pockets of highest stress occur on or near the pressure surface of both the rotor

and second stator. For the rotor, this pocket appears as a streak along the pressure side from approximately 20 to
110 percent axial chord. The highest stresses in the rotor are three times the level of the inlet stress and imply that

the unsteadiness is either enhanced through the rotor, or there is unsteady radial movement of flow. From a model-

ing perspective, these figures also show the ratio of shear stress to intensity (Ts/Q = structural coefficient). This

parameter suggests that the shear stress terms are approximately 1/2 of the intensity and could possibly be modeled

with one transport equation similar to a transport equation for turbulent kinetic energy.

Results from the unsteady analysis for the second stator showed that the highest temporal stress appeared in the

airfoil passage, near the pressure side, at approximately 30 percent axial chord. The level of this stress pocket is

different from the rotor stress since it has approximately the same magnitude as the inlet stress (displayed along the

inlet boundary condition). From a modeling perspective, the intensity stress was 30-40 percent larger than the
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unsteady shear stress, and suggested that the shear stress terms could possibly be modeled with one transport equa-

tion similar to a transport equation for turbulent kinetic energy.

Based on the steady and unsteady 3-D analysis, these simulations did not predict the second stator exit gas

angle profile, as anticipated, and did not capture all the magnitudes of the spatial deterministic stress. It did show

that an average-passage approach suppresses pertinent flowfield information, and modeling these stresses through
an airfoil row using a steady CFD code will require segregation modeling (transport equation) when, or if, the

stress influences performance. This analysis also suggests that the measured angle profile at the second stator exit

is a result of something other than has been modeled in the current simulation.

5.3 THREE-DIMENSIONAL STEADY EULER AND RANS SIMULATION FOR AIRFOIL ROW
ASSESSMENT OF EFFECT OF BOUNDARY CONDmONS

Since the exit gas angle downstream of the second stator could not be accurately simulated by using either the

steady or unsteady versions of the multistage Euler code, an additional numerical study was performed to assess

the impact of inlet boundary conditions on the stator exit flowfield. This study was conducted by using the steady
version of Ni's code and a 3-D RANS code developed by Ride [8].

The studies performed with the Euler code included varying inlet yaw angle, removing surface viscous model-

ing effects, and modifying the inlet total pressure profile. The Euler analysis consisted of a steady row calculation
of the second stator, with axial plane boundaries consistent with the previous 1 l/2-stage simulation. The inlet

boundary conditions consist of spanwise distributions of total pressure (Pt), total temperature (TO, radial gas angle

(_), and yaw angle (or). The exit condition consists of static pressure at midspan with the spanwise gradient deter-

1 _Ps
mined by simple radial equilibrium (P _ = Ct2/R)" The base case is a row calculation performed with the inlet

and exit boundary conditions from the 3-D steady 1 1/2-stage simulation. Figure 45 shows the result of the row

boundary condition study.

The base case (squares in Figure 45) shows that there is a calculated dropoff in both yaw angle and total pres-

sure at 0 and 100 percent span from the steady 1 1/2-stage simulation. The boundary condition results in a reduced

axial velocity, at the inlet, near 0 and 100 percent span. At the exit, as previously discussed, the yaw angle drops

near the endwalls (0 and 100 percent span) and rises up toward midspan where the angle is almost constant at 22

degrees from 20 to 80 percent span. Removal of the total pressure profile, by maintaining the average (igloo sym-
bol in Figure 45), shows that the inlet velocity distribution changed slightly from the base, but the exit yaw angle

profile has been inverted. This angle profile is high near the endwalls and drops toward midspan, changing the end-

wall angles 10 to 15 degrees, and the midspan by 5 degrees. Maintaining the fiat pressure profile and removing the

angle profile (holding average yaw) result in an angle profile similar in shape to the base (1/4 arc symbol ili

Figure 45). This flat inlet angle results in all exit angle change on the endwalls of 8 to 13 degrees and at midspan of

4 degrees. The inlet axial velocity no longer drops near the endwail and is almost constant at 80 ft/sec. The final

configuration examined is the case where the inlet pressure and angle profiles are a constant, and the surface shear

model is removed from the analysis (triangle symbols in Figure 45). The analytical result shows that the inlet axial

velocity increased about 1 ft/sec, but the spanwise profile remained the same (as with shear). The exit angle

responded in a near linear fashion from 0 to 100 percent span, as anticipated based on P&W's experience. The vis-

cous shear model changed the endwall angles by 3 to 5 degrees, and the midspan angle by 1 degree. This analysis

indicated that the inlet boundary condition influenced the exit angle profile distribution the same order of magni-

tude as the mismatch previously discussed, and is important if exit gas angles are to be calculated.

Since the inlet boundary conditions have shown to influence the exit gas angle, a RANS and Euler (with shear)

analysis was performed using the time-averaged measured data required in the 1 l/2-stage rig. This simulation

incorporated a fiat temperature profile, measured pressure profile, measured yaw and phi angles, and downstream

measured static pressure.
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Aspreviously shown from the Euler results, the airfoil loading was relatively insensitive to the ability to cap-

ture the unsteadiness or viscous terms. However, the loading is an indicator of the overall flow, flow distribution,

and trailing edge fiE) modeling of any analysis and is shown for the RANS analysis in Figure 46. The loading
showed reasonable agreement, and therefore, the overall potential flowfield is satisfactorily captured. The resultant

exit gas angle from the RANS code showed good agreement with the data, except for some discrepancy in the tip.

This miss in the tip may be associated with obtaining a true periodic second vane segment, as this was where the

unsteady analysis showed the most discrepancy between periodic and representative passage. Euler analysis with

the measured boundary conditions, into the second vane, showed much better agreement than previously shown

from the multistage Euler analysis in Figure 30.

The result of the 3-D steady analysis performed on the second stator indicated the need for the RANS code to

be used in the multistage simulations to ensure more reliable flowfield predictions.

5.4 "IWO-DIMENSIONAL UNSTEADY EULER AND RANS SIMULATIONS FOR TURBINES WITH
INCOMING HOT STREAKS

Numerical simulations were conducted in three model turbines operating with incoming hot streaks by using

2-D versions of Ni's unsteady, multistage Euler and RANS codes. The main objectives for conducting these simu-
lations were to demonstrate that:

• There is a need to simulate flow through more than one representative passage in each airfoil row in a mul-

tistage environment to ensure accurate predictions of time-averaged flow properties.

• The deterministic stresses/fluxes for simulating flow through high-pressure turbines (HFFs) are important.

• The adverse effect of hot streaks in turbines can be managed.

5.4.1 Flow Simulations Through 1 1/2-Stage Turbine

Simulations were performed for the mean section of the UTRC LSRR turbine by using one hot streak, three

first stator, four rotor blade, and four second stator airfoil passages. The 2-D version of Ni's unsteady, multistage
Euler code, with the wall shear force model, was used to conduct the numerical simulations. Results from this sim-

ulation at an instant in time are provided in Figure 47. This figure shows the distributions of temperature through
the flowfield with a hot streak entering between two first stator airfoils, and convecting through the rotor into the
second stator.

The time-averaged total temperature distribution from the simulation (Figure 48) shows segregation of hot and

cold flow in the rotor passage. The rotor airfoil pressure side operates at a higher temperature than the suction side.

In addition, one of the four second stator airfoil passages operates in a higher temperature environment than the

other passages. It is apparent from this figure that unsteady computations are needed to properly describe the tem-

perature field in the turbine with an incoming hot streak.

This configuration can be represented with an average-period approach to compute flow through multistage

machines. Simulation of flow, through the above configuration, using the conventional approach, where a single
representative passage is used to compute the flow through each airfoil row, will yield incorrect results for the tem-

perature distribution in the three second stator passages. A steady flow simulation through this turbine, by using

either the conventional representative passage or the average period approach, will yield incorrect temperature dis-

tributions for the rotor, unless the temperature segregation phenomena can be accounted for. One approach to sim-
ulate this effect is described below.

5.4.2 Model for Deterministic Stress/Flux Terms

Three numerical simulations were conducted to develop a model for deterministic stress�flux terms, which can

be used in turbine design/analysis. The mean section of the UTRC LSRR turbine stage, with an incoming hot
streak and with the same number of airfoils in the rotor and first stator, was used as the model turbine for the simu-
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lations. The 2-D steady and unsteady versions of Ni's Euler codes with the wall shear force modeling, discussed

above, were used to conduct the simulations.

The first simulation was conducted by using the steady version of the code with interface averaging prior to

calculating the rotor flowfield. Calculated temperature distributions from this simulation, shown in Figure 49(a),

illustrate that the temperature field for the rotor from this simulation is uniform, and there is no effect induced by

the incoming streaks. Based on the steady and unsteady result, there is a need to develop models that will predict

elevated levels of temperatures on the rotor airfoil pressure sides in turbine stages operating with incoming hot

streaks.

The second simulation was conducted by using the unsteady version of the code. This simulation was used to

establish the magnitudes of the time-averaged flow properties for the stator and the rotor airfoil passages as well as

the deterministic stress/flux quantities. The time-averaged temperature field obtained from this simulation is shown

in Figure 49(13). This figure illustrates the migration of hot streak through the stator passage, its distribution over
the rotor inlet, and the appearance of hot gas near the airfoil pressure side. The increased levels of temperatures

shown near the airfoil pressure side are in agreement with experimental data of Butler et al. [9].

The third simulation was conducted by using the steady version of the code, but with appropriate gradients of

deterministic stress/flux terms as sources in the transport equations for mass, momentum, and energy. These source

terms were computed from the unsteady simulations discussed above. The computed temperature field from this

simulation is compared to those obtained from the unsteady flow simulation in Figure 50. Almost identical results,

predicted by the two simulations, indicated that the unsteady flow effects induced by the turbine inlet hot streak can
be simulated through deterministic stress/flux distributions. This result may not be surprising, but to P&W's knowl-

edge, has not been previously demonstrated. The values of deterministic stress/flux were calculated from the

unsteady flow simulation, which was also used to establish the temperature field representing the basis of compar-
ison. The agreement between the two calculations in this figure demonstrated that steady flow simulations, with
stresses included, can be used to get as accurate estimates of the temperature field as unsteady flow simulations.

This idea can be implemented by establishing the magnitudes of deterministic stress�flux terms in rotor pas-

sages from unsteady Euler flow simulations for the turbine with incoming hot streaks. These calculated determinis-
tic stress/flux terms can be included in steady multistage RANS codes to obtain realistic estimates of hot streaks in
a viscous flow environment, assuming that the viscous flows have relatively small effects on the temperature

migration in the rotor passages.

5.4.3 Hot Streak Management in Turbines

Results of numerical simulations discussed in the above two subsections demonstrate that a turbine rotor per-

forming in the presence of nonuniform inlet temperature is likely to have a higher temperature on the rotor airfoil

pressure side than on the suction side. Experience in the industry is consistent with these results, since maximum
thermal distress is invariably found on the airfoil pressure side. Extensive efforts have been undertaken over a

period of decades to explain this higher than expected heat load on the airfoil pressure sides. Numerical simulations
were conducted in the present program to establish whether a procedure could be identified to manage the adverse
effect of hot streaks in turbines. The simulations were conducted for the mean section of a model turbine stage, rep-

resenting a state-of-the-art design for commercial aircraft engines. The airfoil rows in this turbine were designed to

operate at subsonic flow conditions. Both rows were designed to have the same airfoil count to facilitate numerical

simulations.
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Three sets of computations were conducted for the turbine by using the unsteady, multistage version of Ni's
RANS code, with the following:

• Uniform temperature at the first stator inlet to represent an Idealized Design, which is consistent with the

assumptions used in the current design processes.

• Hot streak in the mid-passage of the first stator to represent a Conventional Design, a configuration likely
to be optimized from a Steady Flow Design approach

• A hot streak aligned to the first stator to represent a Managed Hot Streak Design, which is developed by
using an approach that acknowledges the presence of unsteady flows in turbines.

All three simulations were conducted for identical operating conditions, as indicated in Table 1. Time-averaged
temperature fields obtained from these simulations are shown in Figure 51. The highest levels of rotor airfoil sur-

face temperatures are predicted for the configuration represented by the Conventional Design, whereas the Ideal-

ized Design shows the lowest rotor surface temperatures. Moderate values of rotor airfoil temperatures on the

pressure side are predicted for the Managed Hot Streak Design. Instantaneous contours of the total temperatures

through the rotor for the Conventional and the Managed Hot Streak Design configurations are shown in Figures 52

and 53, respectively. Four contour plots in each of these figures illustrate the migration of hot streak through the

turbine rotor and its accumulation on the airfoil pressure side. Aligning of the hot streak with the first stator may
initially appear as an incorrect strategy since it yields higher temperatures on the first stators. The first stators for

the HFrs are, however, designed for almost stoichiometric temperatures. Cooling air in the stator does not have as

much of a detrimental effect on turbine performance as the cooling air in the rotor. Aligning the hot streak to the

first stator reduces the temperature and velocity of the hotter gas, and yields less distortion at the inlet to the rotor

than the configuration with hot streak in the mid-passage of the ftrst stator.

Time-averaged specific work of the rotor was not affected by the hot streak, as suggested by the time-averaged

rotor surface static pressure distribution for the three simulations (shown in Figure 54). Since the static pressures
are not impacted, incorporating the steady pressure field solution into a time-averaged code may eliminate the need
for a deterministic stress transport equation, and should be investigated in future efforts.

Time-averaged airfoil surface static temperatures for the three rotor configurations are shown in Figure 55.

Highest surface temperatures are predicted for the configuration with the hot streak through the middle of the first

stator. The Managed Hot Streak configuration shows low temperatures on both sides of the airfoil, indicating that
an improved understanding of the flow phenomena can be used to accommodate the adverse effects of hot streaks
in the rotor passage.

Performance estimates (Table 1) were obtained from the numerical simulations for the three configurations.
Best overall efficiency was found for the Idealized Design with a uniform inlet temperature. The Conventional

Design configuration, with the hot streak through the middle of the first stator airfoils, had almost 0.8 percent lower

efficiency than the Idealized Design. The Managed Hot Streak Design was performed at 0.4 percent higher effi-
ciency than the Conventional Design, and lower than the Idealized Design by the same amount.

In summary, understanding of flow phenomena, deduced from the numerical experiments conducted in this
program, has shown the potential to improve performance and reduce head load in a realistic turbine environment.

In addition, these simulations have identified limitations in the current design process, where the assumption of
uniform inlet temperature to the turbine first stator can lead up to a 0.8 percent overestimation of the turbine effi-

ciency, and an underestimation of the rotor pressure side temperature on the order of about 3.3 percent of the rotor

inlet temperature. This underestimation of the temperature, or the heat load on the airfoil pressure side, can reduce
the life of the rotor airfoil by a factor of four.
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5.5 SUMMARY

Resultsfromthenumericalexperimentsaresummarizedbelow:

• Time-averagedmeasuredpressuredistributionsonairfoilsurfacesagreewellwithall versionsof the codes

used in the present exercise. Designs of turbines have historically been conducted by using Design Crite-

ria, based on airfoil pressure distributions. Although more complex analyses (RANS, unsteady) are not
needed to estimate the airfoil surface static pressure distributions, there is a need to develop Next Genera-

tion of Design Criteria, since the efficiency and heat loads on airfoils have been strongly affected by flow

unsteadiness.

• The shear force model used in Ni's multistage Euler code has been shown to be inadequate to simulate sec-

ondary flows in multistage turbines. Based on computational results, a RANS code is needed to provide

reliable simulations of angle profiles for multistage turbines.

• Accurate inlet and exit boundary conditions are needed to obtain realistic predictions of flow angles

through an airfoil row. A RANS code is needed to ensure accurate estimates of boundary conditions for an

airfoil row in a multistage environment.

• Simulations of flow through one representative periodic segment (not one representative airfoil passage)
are needed to ensure that the circumferential flow distortions, generated by the upstream airfoil row (or

fuel nozzle) in the same frame of reference as the current airfoil, are properly accounted for.

• From the computations, Deterministic Stresses have a relatively small effect on the airfoil loadings and the

profiles of mean flow angles and velocity in flow situations with no gradients in temperatures. The experi-
ments discussed in Section 7 show more quantitatively the effects of Deterministic Stress on performance.

• Deterministic stress/flux terms generated in turbines with hot streaks have a significant effect on the effi-

ciency and heat loads in turbine rotors. A procedure has been proposed to compute the distributions of

these stress/flux terms by using unsteady Euler codes and distributions in steady, multistage RANS codes.

• This numerical effort has identified that efficiency and rotor temperature can be impacted through Hot

Streak Management. Computations imply that proper placement of incoming hot streaks may improve the

efficiency of a single-stage turbine by up to 0.4 percent and reduce the temperature/heat load on the airfoil

pressure side by 3.3 percent, yielding a potential improvement in airfoil life by a factor of four, or reduce

cooling requirements in the rotor by 10 percent.
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Table 1. Operating Conditions for Model Turbine Used in Hot-Streak Management Numerical Experiment

Idealized Managed Hot. Conventional
Design Streak Design Design

Inlet Temperature (*F) 800.00 800.07 800.14

Inlet Pressure (psi) 10.00 10.00 10.00

Flow Parameter 57.67 57.50 57.64

Adiabatic Efficiency 93.65 93.26 92.89

Pressure Ratio 1.9273 1.9310 1.9284

Temperature Ratio 1.1906 1.1903 1.1889

S_ttor _ Stator

71 g,30.cd=r

Figure 25. Schematics of Two-Stage Turbine Showing Strategy Used in Computing

3-D Flows by Using Multistage Euler Code; Flow Downstream of Each Airfoil

Is Averaged, and Calculations Are Conducted in Their Frame of Reference
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Figure 34. Spatial Stresses at First Stator Exit Show That Steady Euler

(With Shear) Does Not Predict Measured Flow Distortion
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Figure 35. Spatial Stresses at Rotor Exit Show That Steady Euler (With Shear) Captures

Secondary Flow Vortex (Vt2, Vr2), But Not Associated Blockage (Vx2)
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Figure 37. Large-Scale Rotating Rig First Stator Exit Flowfield Calculated To Be Almost Identical by Using

Steady and Unsteady Multistage Etder Code," Some Effects in Gas Angle Can Be Observed
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Figure 38. Large-Scale Rotating Rig Rotor Exit Flow/[eld Calculated To Be Fairly Similar by Steady and

Unsteady Multistage Euler Code," Some Effects of Unsteadiness Evident in Entropy and Angle Contours
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Figure 41. 3-D Unsteady Euler Simulations Show That Level of Stress Through Rotor Blade Intensifies

and Then Decays at Exit of Passage; This Result Shows Same Trend as Data, Where Measured Inlet and

Exit Stress and Intensity Are Approximately Same at Rotor Inlet as at Rotor Exit
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Figure 43. 3-D Unsteady Euler Sim.lation of LSRR Rotor Shows that Total lntensi O, and Total Shear" Reasonably

Correlate as Shown by Struct.ral Coefficient
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Figure 47. 2-D Instantaneous Flow of" Hot Streak Simtdated by P& W Unsteady Euler Code ldenti[_es Regions of"

Temperature Disturbances; Understanding of" This Simtdation Will Assist in Average-Passage Model Development
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Figure 48. Time-Averaged Temperature Calculated by Using Ni _' Unsteady Euler Code Shows High Levels &"

Temperatures on Rotor Pressure Side and High Temperature in One &" Four Second Stutor Passages
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Figure 49. Numerical Simtdation for Mean Section of UTRC LSRR Turbine Stage With

Incoming Hot Streak by Using Steady and Unsteady Versions of Ni's Ezder Codes.

Time-Averaged Results from Unsteac_' Simtdation Show High Temperatures on Rotor Airfoil

Pressure Side, Which Is in Agreement 147th Experimental Data. Stead_' Flow Simtdation Shows Coltstattt

Temperatttre in Rotor Passage, hzdicating Need To Accotmt for Effects of Periodic Unsteadiness
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Figure 51. Time-Averaged Temperature Distribution for Model T_rbi_]e Stage

by Using Ni's Unsteady RANS Code. Impact of Stator Inlet Hot Streak on Rotor

Airfoil Pressure Side Can Be Minimized by Aligning Hot Streak to Turbine Stator
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6. BACKGROUND OF EXPERIMENTAL PROGRAM SELECTION

The objective of the experimental program was to determine the effect of deterministic stresses on aerody-

namic performance and heat load. Since the largest deterministic stresses measured were at the rotor exit, the

experimental program focused on the interaction of the rotor and second stator. This section describes the design of

the experimental program, the newly acquired benchmark data, data analysis, and the selection of the experimental

program.

6.1 BASIC RIG CONFIGURATION

The original large-scale rotating rig (LSRR) configuration contained airfoil counts and a data acquisition pro-
cess that was not periodic for the second stator aerodynamic information (22 first stator, 28 rotor, and 28 second

stator airfoils) data acquired over two first stator pitches. In a multistage turbomachine, periodicity occurs when the

ideal flowfield repeats over a circumferential segment of the annulus. For the original LSRR configuration, this
occurs in a 180-degree annular sector comprised of 11 first stator, 14 rotor, and 14 second stator airfoils. Because

the available traverse capability only extended over two first stator pitches, modifications to the rig were necessary
to ensure periodic data.

The following approaches were explored to achieve measurements over a periodic boundary:

• Modify the existing rig to enable traverse data acquisition over 180 degrees

• Circumferentially index the first stator, relative to the second stator, in increments that capture all airfoil-

to-airfoil interactions, thus requiring no traverse system modifications

• Modify the In'st and/or second stator airfoil count, to reduce the extent of the periodic segment from 180
degrees to a segment consistent with the existing traverse system.

After reviewing each of the three options, it was determined that changing the f'L,'Ststator count to 28 was most

viable and cost effective. Changing the first stator count required no changes to the traverse system and/or data

reduction software, and two periodic segments (i.e., two first/second stator pitches) can be traversed for averaging.
Also, computational fluid dynamics (CFD) simulations become more efficient (requiting analysis of only one first

stator, one rotor, and one second stator airfoil passage).

6.2 EXPERIMENTAL CONFIGURATIONS

The collaborative effort between the National Aeronautics and Space Administration-Lewis Research Center

(NASA-LeRC), United Technologies Research Center (UTRC), Pratt & Whitney (P&W), and Massachusetts Insti-

tute of Technology (MIT) resulted in numerous discussions about the data, calculations, and various supporting

experimental programs. Three potential experimental configurations were considered and investigated in detail,
while the new baseline data (loadings, angles, pressures, and velocity) from the LSRR with the 28-28-28 airfoil

count were being acquired. Since the expectation was that all data would repeat the original experiment (heat load,

angles, etc.), hardware was to be designed and fabricated to be installed upon completion of the data acquisition.

From previous data and analysis (Sections 4 and 5), the non-typical heat transfer measured on the second stator

(Dring et al., [10]) was hypothesized to be associated with the secondary flow from the rotor. Three experimental

approaches, therefore, had been initially formulated on controlling the flow into and/or passing through the second

stator. Each option was analyzed with the new airfoil count of 28-28-28. The first approach was to design a second

stator to minimize the effect of the rotor secondary flow. The second approach was to redesign a rotor to change the
vorticity and deterministic stress entering the second stator. The third approach was to let the flowfield mix and

decay to reduce incoming stresses. A brief description of the methodologies is discussed below (more details are
available in Appendix A).
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6.2.1 Experimental Program Selection

Experimental Approach 1 w A second stator was designed to achieve a uniform spanwise exit angle distribu-
tion given the inlet vorticity from the rotor. This was achieved by an interactive design process, combining CFD
with airfoil recontouring. The final design resulted in highly three-dimensional (3-D) stacking of the airfoil sec-

tions.

Experimental Approach 2 _ The rotor was redesigned to produce uniform spanwise exit angle distribution to

minimize the inlet spanwise vorticity to the second stator. Computational fluid dynamics tools were used to achieve

this result by recontouring the airfoil surface and incorporating a 3-D stacking. This airfoil was fabricated, under

UTRC funding, to ensure that the overall program schedule would be minimally affected. However, due to the con-

cern that the gap-average vorticity changed, but the deterministic stress was estimated to remain approximately the
same, it was decided that this option should be tested with a configuration that minimized the midspan determinis-

tic stress. This was accomplished by designing secondary flow fences that contained the secondary flow vortices

close to the endwall. A large-scale/low-speed wind tunnel with smoke visualization was used to ensure that the

fence configuration achieved all the requirements. These fences were also fabricated, along with a new set of base

rotor blades (under UTRC funding), to ensure the program schedule would be minimally affected.

Experimental Approach 3 -- The third option was to allow the flow distortion to decay by introducing various

axial spacings between the rotor and second stator. Although there was capability in the existing rig to accommo-
date this test, the spacing was fixed between the first and second stator, creating the spacing between the rotor and

first stator to also vary. Therefore, the rig needed to be modified to maintain first stator to rotor axial gapping, while

the second stator to rotor axial gap was varied. Computational fluid dynamics computations implied (discussed in

Section 5), that as the axial spacing changed, the first stator wake would impinge differently on the second stator.

The fn'st stators, therefore, must be indexed circumferentially (clocked), relative to the second stators, to achieve a

proper average result for axial spacing.

6.3 CONFIGURATION CHANGES

As previously mentioned, the first stator airfoil count was modified to give periodic boundary conditions by

adding six first stators to the rig at equal circumferential spacing. The stagger angles were re-set to achieve the

original velocity triangles. In addition to the airfoil count change, the second stator suction side heat transfer model
was rebuilt due to visible deterioration of the original model.

6.4 RESULTS

6.4.1 Aerodynamic Data (New Baseline)

To verify that proper flow was achieved in the rig, airfoil surface static pressures, airfoil exit angles and pres-
sures, and endwall static pressures were acquired. This section briefly discusses the data, as compared to previ-

ously acquired data, for the original configuration. A complete description of the remaining data is provided in

Appendix C. Because the major changes in the rig were associated with the first stator, most of the discussion is

focused on the f'wst stator experimental results.

Figure 56 shows that the average total pressure versus span behind the first stator is in good agreement with

data acquired for the original 22 first stator airfoil count, except in the tip region. After an investigation of the pos-

sible causes of differences at the tip, it was determined that the original data most likely had seal leaks while tra-

versing the probe, creating non-representative flow in the tip region. As Figure 57 shows, the difference in loss

appears across the complete circumference in the tip area. Leakage was determined to be the most likely cause,
since the same characteristic was observed for the existing first stator (28 count), when the probe was intentionally

not sealed in the traversing slot.

Within the accuracy of the five hole probe, the new stator airfoil count and stagger angle achieved the design

flow angle intent, as shown in Figure 58. To confirm the gas angle measurement, the spanwise static pressures at

82



the exit to the first stator were reviewed. From analysis of the original configuration, simple radial equilibrium

1 _P 1 _P/_R) were found to be within 2 percent of being
_-_ = Ct2/R, the measured pressure gradient, and density (_

equivalent to Ct2/R. By using simple radial equilibrium, the calculated axial velocity, and the spanwise static pres-

sures (shown in Figure 59), the average exit gas angle was determined to be within 0.3 degrees of the original

design, and the angle measurements were confirmed to be valid and consistent with the original design.

The fhst stator surface static pressures are shown in Figure 60. The pressure distributions reflect the unloading

as a result of the increased airfoil count. These surface static pressures were integrated as a function of axial chord

to obtain the tangential loading. As shown in Figure 61, the measured loading is approximately at the level antici-

pated for the airfoil count change from 22 to 28 (lift per airfoil expected to reduce by 1.0-22/28 ___-21.5 percent).
Overall, the aerodynamic data obtained for the first stator show that the design intent flowfield was obtained.

The rotor exit aerodynamics were measured in the same manner as the stators, except the probe rotated with the

rotor rpm. The data measured at the rotor exit plane (Figures 62 and 63) show that the relative flow angle, total

pressure, and rotary pressure have the same spanwise distribution. The rotor spatial stresses (Figure 64) also show
spanwise distribution similar to previous data, indicating the same flowfield aft of the rotor with 28 f'ast vanes,

compared to 22 fast vanes, was achieved. Finally, the spanwise rotor loadings showed good agreement with previ-

ously acquired data within 2 percent repeatability of pressure, as demonstrated by the 50 percent span surface static
pressure distribution in Figure 65. Overall, the measured rotor results with 28 first stators demonstrate that the rotor

flowfield has been reasonably repeated relative to previously acquired data.

The second stator flowfield is difficult to compare to previously acquired data because of the non-periodic flow

conditions in the original rig. However, the data show that exit gas angle (Figure 66) displays the same spanwise

characteristics originally observed. The typical __.1.5degree repeatability is not accomplished in this case and is
believed to be associated with non-periodically averaged data previously acquired. The second stator indicates

unloading relative to the original configuration, as shown by the midspan surface static pressures in Figure 67, but

is not believed to significantly alter the measured heat transfer trends. Overall, the results from the baseline aerody-

namic testing indicate that the changes to the rig were not expected to alter the heat transfer data trends previously
observed.

6.4.2 Second Stator Heat Transfer Data

From the aerodynamic data acquired in the rig, it was expected that the heat transfer data on the second stator

suction side, at midspan, would display the same characteristics as previously observed. However, as shown in

Figure 68, lower heat transfer was measured in the aft portion of the suction side. These data suggest that the differ-

ence may be attributed to a transition phenomena. To investigate what may have caused the transition change (i.e.,
incidence, first stator/second stator interaction, airfoil smoothness, and turbulence), various conditions were exam-

ined (Table 2) to evaluate the influence of various operating conditions.

This matrix of diagnostic testing was assembled to operate the rig at many conditions to acquire the sensitivity
of the heat load for these conditions. This ensures the ability to capture any sudden unexpected changes in the heat

load. The Cx/U impacts the incidence, and axial spacing addresses airfoil interaction; clocking addresses fLrSt to

second stator influences. Trip wires were used to promote premature boundary layer transition, and first stator air-

foil count change was used to reproduce the original configuration. As shown in Figure 69, Cx/U and/or clocking
variation did not achieve the level of suction side heat transfer level or the slope in the aft-portion of the airfoil.

Figures 70 and 71 also show that axial spacing and incorporating trip wires on the airfoil, at 3.5 inches from the
leading edge, did not repeat the heat load.

Because of concern over the possibility of some phenomena associated with the airfoil count, the original con-
figuration was reassembled and retested, as shown in Figure 72. The original configuration heat transfer data did

not repeat. Extensive diagnostics were thus performed on the existing model. These diagnostics confirmed the

validity of the existing heat transfer, concluding that the model used for the previous testing was not representative.
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6.5 ANALYSIS OF EXPERIMENTAL RESULTS

6.5.1 Multistage Analysis of Aerodynamics

As reviewed in Section 5, the second stator steady inlet boundary conditions dominated the second stator exit

gas angle distribution. Multistage steady RANS and Euler codes (with a mixing plane between blade rows, across
which mass and momentum are conserved) were used to analyze the new rig configuration to re-examine the pre-

dictability of the CFD analysis. At the first stator exit, the measured spanwise yaw angle static pressure coefficient
and total pressure coefficient were compared with the RANS and Euler (with shear) results in Figure 73. Near the
inner diameter, the RANS results show angles that peak around 10 percent span, which is more in agreement with

the data than the Euler, which peaks around 25 percent. From midspan to 100 percent span, neither code displays

the increase in angle at 70 percent span. The spanwise static pressure coefficient distribution shows that the data

fall between the simulations, and both codes agree to the same extent. The spanwise distribution of measured total

pressure coefficient is shown to have a low value at 5 percent span, increase up to 13 percent span, and fails to a flat
region at 25 percent span. The simulations show that the Euler does not capture this feature, whereas the Navier-

Stokes simulation reproduces the trend. Both codes show a fiat profile, through the midspan region, with the Euler

level in better alignment with the data relative to the RANS code. This level difference is most likely associated

with the fully turbulent boundary layer assumed in the Navier-Stokes, and a shear force factor representative of
transitional flow in the Euler. In the region near the shroud, the Navier-Stokes reproduces the spanwise data trend

better than the Euler.

A similar trend, as shown for the first stator, was observed at the rotor exit (Figure 74). The RANS shows

trends that are in better agreement with the data, as compared to the Euler. The measured angles show an increase

near the endwall regions, which is partially captured with the RANS code. The Euler results indicate a decrease in

angle. The spanwise static pressure coefficient is calculated to have approximately the same trend, for both CFD
calculations, as the data, except near the inner portion of the towpath, which neither code captures. The absolute
level from these results shows that the RANS code is slightly closer to the data relative to the Euler results. The cal-

culated blade loss profile shows that the Navier-Stokes result agrees better with the measured spanwise distribution

from 4 to 80 percent span, as compared to the Euler. In the tip region neither code agrees with the data, and is likely

associated with the lack of a tip clearance in the simulation.

The results from the multistage steady simulation of the second stator are shown in Figure 75. This figure

shows exit yaw angle and loss versus span. Since the downstream static pressure profile is a specified boundary
condition for the simulation, it is not shown. The yaw angle trend versus span shows that the Navier-Stokes cap-

tures the second stator measured profile much better than the multistage Euler. The loss profile shows that between

20 and 50 percent span, both calculations have approximately the same level and trend, and they are similar to the
data. Between 50 and 90 percent span, the level and trends of the Navier-Stokes capture the measured loss better

than the Euler. From 90 to 95 percent span, the data show a loss rate increase consistent with the RANS, while the

Euler loss remains relatively fiat. In the inner portion of the flowfield, the Euler solution is more in agreement with
the data relative to the Navier-Stokes.

Overall, using a steady analysis with a mixing plane, shows that the steady RANS typically captures flow fea-

tures (static pressure, angle, and loss) better than the steady viscous Euler. The exit flow angle distribution from the

second stator was shown to be highly dependent on the inlet boundary conditions, as shown in Section 5. The abil-

ity of the RANS code to capture the second stator exit angle trend suggests that in a low-speed, multistage turbine,

viscous modeling dominates the flow angles.

6.5.2 Heat Transfer Analysis of Second Stator

The computed loadings on the second stator were used with a STAN-5 boundary layer calculation to obtain the
two-dimensional (2-D) heat transfer distributions for the airfoil at 50 percent span. As shown compared to the data

in Figure 76, the measured heat transfer levels and trends are captured using STAN-5. This implies that the large

secondary flow and associated large deterministic temporal stress entering the second stator do not significantly
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influence the heat load. The aerodynamic and heat transfer analysis shows that the data are reasonably simulated

without accounting for deterministic stresses.

6.6 EXPERIMENTAL PROGRAM SELECTION

The original experimental approach assumed that the unexplained second stator heat load and exit gas angle

distribution, previously measured, were due to the deterministic stresses induced by the rotor secondary flow.

These experimental and numerical investigations, conducted as part of this program, showed that the second stator

exit angle profile was strongly influenced by the steady inlet boundary conditions. Additionally, the unexplained

heat load distribution previously obtained was due to erroneous experimental measurements. At this point, the only

experimental indication that stresses may influence the performance is the change of heat load (with axial spacing)

observed during diagnostic testing.

Experimental data acquired as part of this program, and part of another program, showed that the second stator

deterministic stress would change by approximately 50 percent by varying the axial gap between the rotor and sec-

ond stator by = 55 percent (from x2/B x [~ 0.36 to 0.81]). By evaluating the second stator performance at various

axial spacings, the effect of the deterministic stress could be reviewed. Therefore, Experimental Approach 3 (Sec-

tion 6.2.2) was chosen to evaluate the impact of deterministic stress on second stator performance.
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Table 2. New Baseline Second Stator Heat Transfer Data Acquisition Matrix

First Slator Axial _ Indexing
Coma CrIU x21Bx Position Trip Wire

28 0.76 0.75 1,2,3,4,5 None

28 0.78 0.75 1,2,3,4,5 None

28 0.96 0.75 1,2,3,4,5 None

28 1.15 0.75 1 None

28 0.78, 0.96, 1.1 0.53 1 None

28 0.78, 1.1 0.53 1 0.010 in. height at 3.5 in.

28 0.78, 1.1 0.53 1 0.018 in. height at 3.5 in.

22 0.68, 0.78, 0.96 0.53 1 0.018 in. height at 3.5 in.

22 0.78 0.53 1,2,3,4,5 None
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Figure 56. First Stator Measured Loss Versus Span Shows Higher Loss in Tip Region

With 22 Compared to 28 Stators
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Figure 5Z First Stator Measured Loss Contours Show That There Is High Concentration of Loss

in 7_p Region With 22 Compared to 28 Stators; This Loss Occurs in Regions Outside Wakes and

Is Believed To Be Associated With Leakage in Traverse Seal
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7. EXPERIMENTAL ASSESSMENT

This section discusses the experimental results, from the turbine configuration described in Section 6, as part of
(or in collaboration with) the present contract, where the main objective is to define the effects of second stator

incoming deterministic stress level on the aerodynamic performance and heat load characteristics of the second sta-

tot. This was determined by acquiring heat load and loss at midspan of the second stator for three axial spacings
between the rotor and second stator over five first stator=to=second stator clocking positions at each of the axial
spacings.

The deterministic stress characteristics and measurements obtained are discussed in Section 7.1. Experimental

results acquired to assess the clocking effect are discussed in Section 7.2. Results obtained for different axial spac-
ing are discussed in Section 7.3, followed by a summary in Section 7.4.

7.1 EXPERIMENTAL PARAMETERS

The experimental configuration was designed to change the spacing between the rotor and downstream stator,

as shown schematically in Figure 77. Three different spacings between the rotor and second stator were investi-

gated. The values of spacing (i.e., axial distance between the rotor trailing edge [TEl and second suitor leading
edge [LE] normalized by axial chord of the rotor at midspan) were 0.39, 0.55, and 0.71. Axial spacing between the
fhst stator and rotor was maintained at a fixed value to ensure that the rotor first stator interaction was not affected.

From previous and new baseline data (Section 6), it was determined that the magnitude of the deterministic inten-
sity could be changed by over 60 percent (Figure 78) by aitenng the axial gap between the rotor and second stator

by approximately 55 percent. Since this data acquisition occurred prior to the setup of this configuration, the axial

gaps in Figure 78 were not identical to the axial spacing performed in this experiment. The deterministic intensity
stresses, therefore, were determined by interpolation of this information to the present experimental configurations.

The data used to assess the second stator performance consisted of midspan total pressure measurements, at the

inlet and exit of the second stator, and the distribution of heat transfer coefficients along the airfoil surfaces at the

midspan. The pressure data were acquired over two airfoil pitches using a single-element kiel head probe. Mea-

surements were obtained for midspan airfoil surface static pressures (first stator, rotor, second stator).

A limited amount of unsteady surface static pressure data was also acquired using flush-mounted Kulite pres-

sure probes at the midspan of the second stator. These data were acquired, at one axial position (Gap/Bx-rOtor =
0.75) and five clocking positions, as part of the experimental documentation described in Section 6.

The operating conditions for all measurements (total pressure, heat transfer, surface static pressure) were at the
design flow coefficient of 0.78 to maintain the design incidence angle at the second stator mean section.

The data were acquired for three spacings between the rotor and second stator. At each axial spacing, the first

stator was indexed (clocked) relative to the second stator at five distinct positions extending over one airfoil pitch

(detailed positions described in Appendix B). The first and fifth indexing (clocking) positions were exactly one air-
foil pitch apart, and the intermediate indexing increments were 25 percent of one airfoil pitch. These data, at differ-

ent clocking positions, were acquired to ensure that performance and heat load characteristics represented an
accurate average at each axial spacing.

7.2 STATOR CLOCKING EFFECTS

Clocking of alternate stator airfoil rows have altered the midspan efficiency of a turbine stage by 0.8 percent,

as discussed by Huber, et al. [11] and Sharma, et al. [12]. The location of the first vane wake impingement on the

second vane is dependent on axial gap. Therefore, clocking must be performed to separate clocking from gapping
effects. The effects of clocking on performance and heat transfer in the second stator are discussed in this section.
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7.2.1 Steady Airfoil Loadings

Time-averaged surface static pressure data acquired with pneumatic instrumentation, at the midspan of the sec-
ond stator, are shown in Figure 79 for all five clocking positions. The data are for a normalized axial spacing
between the rotor and second stator of 0.39. The data show that airfoil ]oadings (integrated pressures) are affected

by less than :t:1.5 percent by the clocking between the first and second stator, and therefore, only expected to influ-

ence the boundary layer by approximately the same amount.

7.2.2 Unsteady Airfoil Loadings

As part of the new baseline data acquired (Section 6), unsteady airfoil surface data were acquired for a limited

set of test conditions at the midspan of the second stator. (The axial gap tested was not part of the axial gap testing,

i.e., axial gap/Bx-rOtor = 0.75.) These data were reduced into time-averaged, periodic, and random components.

The measured data for the time-averaged values of the surface static pressure agreed within 2 percent of those mea-

sured with the pneumatic instrumentation and are not shown.

The RIMS values of periodic and random parts of the wall surface static pressure on the airfoil suction side are

shown in Figure 80, for five clocking positions, at a value of normalized axial spacing of 0.75. The random

unsteady pressure fluctuations (Figure 80[a]) show similar levels for all clocking positions, except for the 75 per-
cent clockwise position. The periodic unsteady pressures (Figure 80[b]) show the largest levels in periodic

unsteadiness for the clocking position of 75 percent and lowest levels for the 25 percent position.

7.2.3 Airfoil Midspan Heat Transfer Coefficient

Measured distributions of heat transfer coefficients at the midspan of the second stator are shown in Figure 81

for five different clocking positions. The experimental data, acquired at the normalized axial spacings of 0.39 and

0.55, are shown in Figures 81(a) and 81Co), respectively. Both sets of data show similar characteristics. The heat
transfer coefficients on the airfoil suction side are affected more (about 10 percent) than those on the pressure side

(about 5 percent). The physical mechanisms associated with these changes are not yet understood, but do not

appear to be associated with transition since the general shape along the surface was not influenced (generally asso-
ciated with transition).

7.2.4 Aerodynamic Performance

Aerodynamic performance data, representing the midspan loss of the second stator, were obtained for the three

axial spacings and five clocking positions. The variation of the midspan loss, at each axial spacing, is plotted as a
function of the clocking position in Figure 82(a). Data are shown for the three spacings. All the data show similar

behavior and indicate that loss is affected by roughly 10 percent due to stator clocking. To put this in perspective,

the 10 percent change in the second stator loss causes a i-0.25 percent change in the efficiency of a typical two-

stage turbine.

As previously mentioned, unsteady pressures were acquired, for five clocking positions, during the baseline

testing described in Section 6. The axial gap between the rotor and second stator was different than the axial spac-

ing performed for the effect on loss and heat transfer. This axial gap resulted in the upstream wakes impinging on
the second stator at a different circumferential position. Therefore, a circumferential adjustment was made to

ensure consistent aerodynamic wake positioning (wake impingement location). Once this adjustment was made, a

comparison of the airfoil unsteadiness to loss and heat load was made. By integrating in time and along the airfoil

surface, the unsteady surface pressures and heat load, the surface unsteadiness can be compared to overall perfor-

mance. Figure 82(b) shows that average heat transfer and loss qualitatively correspond to the surface unsteadiness
measured on the suction side of the airfoil at midspan.

7.3 PERIODIC UNSTEADINESS EFFECTS

The effect of inlet periodic unsteadiness was examined by changing a_al spacing between the second stator

and upstream rotor. This change allows the flow distor_on to decay and reduce the periodic unsteadiness. This

change also alters the turbulence level entering the second stator. However, based on the level of midspan turbu-
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lence(Figure17)andtheexpectedrate of decay discussed in References [4], [13], and [14], it is not expected to
change the loss by more than approximately 2 percent.

7.3.1 Airfoil Loadings

Measured time-averaged airfoil surface static pressures at the rnidspan of the second stator are plotted in

Figure 83. The data represent all three axial spacings. Data at each axial spacing represent an average of the clock-
ing positions between the first and second stators. An increase in midspan loading is observed with the increase in

axial spacing between the rotor and second stator. This increase in loading is directionally proportional to the

change in tangential momentum, and therefore, implies a redistribution of spanwise flow and/or turning.

7.3.2 Airfoil Midspan Heat Transfer Coefficients

Heat transfer coefficient distributions along the midspan of the second stator are shown in Figure 84 for two
values of axial spacing between the rotor and second stator (the heat transfer model overheated and failed at the

largest axial gap). The data for each axial spacing represent an average of the data acquired by clocking the first

stator relative to the second stator. The data show that the average heat transfer coefficient (Stanton number) only
showed =1 percent variation as the axial gap was changed.

7.3.3 Airfoil Midspan Performance

Midspan loss data for the second stator are plotted as a function of axial spacing between the rotor and second

stator in Figure 85. Each data point in this figure represents an average of loss values obtained from clocking. The
magnitude of midspan losses is reduced by almost 15 percent as the axial spacing between the rotor and second sta-

tor increases from 0.39 to 0.71. As previously mentioned in Section 7.3.1, the airfoil loading increased as the axial
spacing increased. From two-dimensional (2-D) boundary layer theory, maintaining transition location, it is

expected that the loss would increase by approximately 10 percent for the increased loading. Rematching the airfoil

to achieve the design intent loading, an additional 10 percent reduction of loss would be expected at the 0.71 axial
spacing relative to 0.39.

The loss is plotted as a function of the deterministic intensity at the second stator inlet in Figure 86 (the values
of deterministic intensity were obtained from the interpolation of the data plotted in Figure 78). The measured loss

levels can be representative as varying linearly with the deterministic stress magnitude. The extrapolated values of

loss at zero inlet deterministic intensity are close to the midspan loss estimated from a 2-D boundary layer code and
a wake mixing model. Figure 86 shows the changes in midspan loss due to periodic unsteadiness (quantified as the
level of deterministic intensity at stator inlet).

7.3.4 Impact of Airfoil Spacing on Performance-Comparison With Additional Data

Experimental data discussed in Section 7.3.3 were compared to additional data available from another program

in the large-scale rotating rig (LSRR). Rotor loss data were acquired in these tests using United Technologies Cor-
poration (UTC) Independent Research and Development (IR&D) funds.

Total pressure loss data were obtained, in the IR&D-funded programs, for the rotor by altering axial spacing
between the rotor and upstream stator. The losses were determined by traversing the flowfield at the inlet and exit

of the rotor in the relative frame by using kiel head total pressure probes. These tests were conducted for high and

low flow coefficient operating conditions. The first stator was restaggered to maintain the design intent rotor load-

ing and incidence at each flow coefficient. For each first stator stagger and flow coefficient, the rotor was posi-
tioned at two distinct locations downstream of the first stator.

Normalized overall losses for the rotor, along with the data discussed in Section 7.3.3, are plotted in Figure 87
as a function of normalized axial spacing between the current and upstream airfoil row. The data, both for the rotor

and second stator, follow similar behavior. Each set of data indicates a reduction in loss as the axial spacing
between the two airfoil rows of interest is increased.
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7.4 SUMMARY OF EXPERIMENTAL PROGRAM

The data presented in this section provide a quantifiable demonstration of the effect periodic unsteadiness

(deterministic stress) has on airfoil performance. The physical mechanism through which these losses are gener-

ated has not yet been identified. However, these results indicate there is a need to account for the effects of periodic
unsteadiness to achieve accurate estimates of time-averaged performance for airfoil rows in a multi-row environ-

ment.
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(a) Strongly Influenced by Clocking Between First and Second Stator
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(b) Second Stator Mid.span Loss and Heat Transfer Coefficient Correlates With Surface Unsteady Pressures
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Figure 82 (Continued). Midspan Performance of Second Stator
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8. IMPACT ON DESIGN PROCEDURES AND ENGINE HARDWARE

This section provides an overview of the turbine aerodynamic design and analysis process, shortcomings of the

process, advancements in understanding of flow physics, and how this understanding has been successfully used in
the design of both a high-pressure turbine (HPT) and a high-pressure compressor (HPC) for a commercial engine
aircraft application.

8.1 OVERVIEW OF TURBINE AERODYNAMIC ANALYSIS AND DEVELOPMENT

The evolution of the turbine design systems during the execution of this program is depicted in Figure 88(a).

The tools used in the 1980s consisted of meanline and streamline flow solvers used to optimize the flowpath shapes
and radial flow distributions. Two-dimensional (2-D) blade-to-blade flow prediction methods (potential and Euler

flow solvers), combined with boundary layer codes, were used to optimize airfoil shapes for loss and heat load lev-

els. Effects of periodic unsteadiness were accounted for in these codes (Sharma, et al. [12]) by assuming that the

main impact of unsteadiness was to alter the nature of boundary layers (laminar-turbulent) on airfoil surfaces. (Air-
foil pressure distributions were assumed to be unaffected by the periodic unsteadiness.)

The optimized 2-D airfoil sections were stacked in the radial direction to comply with structural requirements.
Upon completion of the airfoil stacking, three-dimensional (3-D) multistage steady flow solvers (such as Ni's Euler

code with wall shear force models) were used to analyze the configuration. The assessment of the design was based

on a figure of merit (FOM) developed from extensive rig and engine testing. This FOM includes the following
parameters:

• Pressure gradients along the airfoil surface and endwall

• Incidence angles

• Surface Mach number levels

• Surface Reynolds numbers

• Flow differences between streamline analysis and 3-D Euler analysis

• Curvature along the airfoil surface.

An additional FOM also included 2-D bounda_ layer calculations along airfoil surface slices along flow lines.

This procedure yielded candidate turbine designs; the most promising designs were experimentally evaluated in
rigs. Turbines designed through this process provided good performance, but typically required modifications to

reflect less than optimal cooling designs because of the poor estimation of the airfoil heat load.

Experimental programs, conducted to investigate the impact of combustor-generated hot streak migration in

turbine rotors (Sharma et al. [15]), clearly showed higher than average temperatures on the rotor airfoil pressure

sides. Unsteady Euler codes were then added to analysis tools used in the turbine design process in the early 1990s,
as indicated in Figure 88(b), defining the levels of adiabatic wall temperatures on rotor airfoil surfaces. These

codes were used to conduct numerical experiments to enhance understanding of these flows and to develop FOM

for managing hot streaks in turbines. An example is discussed in Section 5.4 -- Two-Dimensional Unsteady Euler
and RANS Simulations for Turbines With Incoming Hot Streaks.

Numerical experiments were conducted by Rangwala et al. [16] using an unsteady RANS code. These experi-

ments showed (Figure 89) that time-averaged pressure distribution on the nozzle guide vane of a highly-loaded sin-
gle-stage turbine was affected by the axial gap between the vane and downstream rotor. This result indicated that

the airfoil surface static pressure distributions, predicted by a steady code, would most likely yield errors when

applied in a supersonic flowfield. Since loading was used as an important ingredient for the FOM, unsteady codes

(RANS and Euler) became an integral part of the design process for both defining loadings and determining the
adiabatic wail temperatures.
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Unsteadyflow simulationswereconductedfor variousHITs fromproductionengines.Ni's 3-D multistage
unsteadyEulercodeindicatedthat poor performing turbines exhibited two to ten times the unsteady pressure fluc-

tuations along airfoil surfaces, compared with better performing turbines, as indicated in Figure 90. Instantaneous

and time-averaged pressure distributions from one of these turbines is shown in Figure 91. This time-averaged

pressure distribution, along the airfoil surface, met the design intent and was considered a good pressure distribu-
tion. A visual comparison showed that the instantaneous pressure distribution did not display the same shape along

the suction surface and, based on the understanding of steady flow (correlations and/or 2-D boundary layer theory),

the instantaneous performance would be poor. This result indicated a need to quantify the impact of unsteady pres-

sures on the loss generation.

Experiments were conducted in the United Technologies Research Center (UTRC) large-scale rotating rig
(LSRR) to investigate the impact of axial spacing between the rotor and upstream stator on the performance of the

rotor. Unsteady flow calculations (Euler) were conducted for these experimental configurations. Both numerical

and experimental results are shown in Figure 92. The figure shows a reduction in total pressure loss for the rotor as

the axial spacing between the rotor and the upstream stator was increased. A reduction in the amplitude of unsteady

pressure was also predicted as the axial spacing between the rotor and stator was increased. This numerical and

experimental evidence suggested that a reduction in the unsteady static pressure amplitude on the rotor had a bene-

ficial impact on the performance.

An additional potential performance improvement concept was identified, while interrogating unsteady flow
data from the UTRC LSRR (discussed in Section 4). A circumferential measurement of the unsteady flow entering

the second stator, in the absolute frame, showed that the unsteadiness was not axisymmetric. This circumferential

variation in unsteadiness is graphically shown in Figure 93 through the apparent viscosity (Equation 11). Based on

this figure, it was hypothesized that the performance of the downstream stator was likely to be affected, depending

on the circumferential position. Since the first stator was believed to be the cause of this circumferential variation,

the concept of clocking (indexing) of the two stator rows was established.

Physical experiments were conducted for a rocket turbine at National Aeronautics and Space Administration-

Marshall Space Flight Center (HASA-MSFC) to investigate the effect of clocking on the two-stage turbine perfor-

mance. Results from this investigation (Sharma et al. [12], Huber et al. [11]), plotted in Figure 94, indicate that the

midspan performance of the turbine changes by 0.4 percent by clocking the two stator airfoils. Results from numer-
ical simulations conducted for this configuration by using Ni's unsteady 2-D RANS code are also shown in this fig-

ure. The variation in performance, predicted by the RANS code, was lower than measured, but displayed similar
characteristics to the measured data. In addition, levels of unsteady airfoil surface static pressures for the second

stator indicated that higher efficiency (lower loss) occurred when there were lower levels of unsteady pressures.
Results indicated a reduction in unsteadiness on the airfoil surfaces was likely to have a beneficial effect on the per-

formance of the turbine (Figures 90 through 94).

8.2 UNSTEADY AERODYNAMIC ENGINE APPLICATION

The HFF used in large commercial aircraft engines was redesigned by using managed hot-streak and wake-

management (clocking and axial spacing) concepts discussed above. The towpath cross-sections are shown in

Figure 95. The turbine was designed to minimize the envelope of unsteady pressures on airfoil surfaces, clock the

t-n'st to second rotor, and align the hot streak with the first stator. The change in the efficiency measured from this

redesign exercise, shown in Figure 96, demonstrated that the concepts developed during the execution of this pro-

gram have yielded at least 1.J-percent improvement in the efficiency of the I-Hyr.The first rotor airfoil pressure
side has been measured to be at least 80°F cooler, relative to the baseline design for the same rotor inlet tempera-

ture. The observed reduction in rotor pressure side metal temperature was approximately what was expected, based

on results from the unsteady Euler code and applying the expected effect of cooling flow. The cooler rotor airfoil

pressure surface temperature can either be traded for improved performance with the same life, or substantial

improvement in life with the same performance.
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MultistageRANS codes, with mixing-plane approach by using the strategy to simulate flow through one repre-

sentative airfoil passage in each airfoil row, were used to predict the flowfieid of turbines. Significant gains in per-
formance have been realized since the introduction of these codes.

8.3 HIGH-PRESSURE COMPRESSOR APPLICATION

Multistage RANS codes have also been used to enhance the performance and stability of an HPC. Loss gener-

ation mechanisms in compressor airfoil rows were typically dominated by flow separation in the endwall regions
(viscous boundary layer and/or tip clearance induced separation). These separation regions were normally on the

order of the pitch of the airfoil, which can be fairly well captured by the state-of-the-art turbulence models and grid

structures. Flow in endwall regions in compressors separated much earlier than on the airfoil surfaces (i.e., midspan

region). Therefore, inaccuracy in resolving airfoil boundary layers (laminar- transitional - turbulent) never limited

the performance predictive capabilities of the cedes. A review of the development work for an HPC was outlined

by Coons [17] and LeJarnbre et al. [18], and indicated that the application of multistage RANS codes has lead to
the improvement in performance and stability of an 11-stage HPC.

Flow through an existing 11-stage HPC was analyzed by using a 3-D, steady multistage RANS code with mix-

ing plane boundary conditions. Flow simulations showed large regions of separated flows in the endwall regions,
as shown in Figure 97. Stator airfoils were bowed, and shapes of endwalls on rotor roots were contoured to elimi-

nate predicted separations in endwall regions at the design point (Figure 98 [a] and [b]). The I-IPC (shown in

Figure 99 was tested and found to yield up to 2 percent improvement in the efficiency. Stall margin was lower than

the goal, but it was in good agreement with experience, as indicated in Figure 100. Analysis of the experimental

data from the rig indicated a deficit of flow in the tip region of the HPC Build 1, which may have been responsible
for stall margin (Figure 101).

Numerical simulations were conducted for the HPC by using Rifle's [19] steady, 3-D multistage RANS code.

Modifications to the code were necessary to account for the effects induced by adjacent airfoil rows (in terms of

body forces and deterministic stresses), using simplified versions of terms developed by Adamczyk [1]. Effects due

to rotor tip clearances were also modeled in the Rhie code. Results from these simulations (Figure 101) indicated

flow separation in the outer regions of the stators. Two subsequent builds of the HPC were tested by implementing
stator root cutbacks to redistribute flow toward the tip for the middle and the rear of the HPC. Measured results

from the rig tests (Figure 102) demonstrated improvement in the stall margin of the machine, while maintaining the

performance measured in the first build of the rig. This effort has demonstrated that 3-D steady multistage RANS
codes, with simple models to account for the effects induced by adjacent airfoil rows, can be used to enhance the
performance and stability of HPC.

8.4 SUMMARY

The examples discussed in this section indicate that enhancement in the design procedures for both turbines

and compressors over the last five years (the duration of the contract) have resulted in hardware changes. A reduc-

tion of almost 2.25 percent has been realized in specific fuel consumption for engines used in commercial aircraft.

Although these enhancements were not developed directly under this contract, the technical efforts and improved
understanding developed through this contract have played an important role in these demonstrated successes. In

addition, new areas of opportunities have been identified to further improve the performance, stability, and durabil-
ity of machines.
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Figure 88. Turbine Aerodynamic Design Process Evolution
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9. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Although real flows in turbomachinery are highly unsteady, due to relative movements of adjacent airfoil rows

and circumferential gradients in total pressure and total temperatures, steady flow predictions methods are histori-

cally used in the design optimization processes. The effects of unsteadiness are implicitly accounted for in the

design process through empirical correlations and experience factors. The inability to properly account for the

flow physics in these correlations and factors invariably leads to non-optimal designs, requiring extensive develop-

ment times and costs. The objective of the present investigation was to develop analysis procedures that accounted

for these unsteady flow effects explicitly in the design process through deterministic stress/flux terms, shown by
Adamczyk [1], in the equations of motion.

This investigation consisted of analyzing unsteady flow data available from previous work at Pratt & Whitney

(P&W), execution of numerical experiments to assess affects of boundary conditions and unsteady flow manage-
ment concepts, and execution of physical experiments to quantify impact of clocking and spacing (deterministic

stress) on performance and heat load of airfoil rows in a multistage environment. The following conclusions can be

derived from the studies conducted as a part of, and in collaboration with, the present program.

Performance and heat load characteristics of an airfoil row are affected by its relative circumferential position

(clocking) to the upstream airfoil row. A +10 percent change in loss equivalent to a :e0.25 percent change in effi-

ciency of a typical two-stage turbine can be expected as a result of this clocking effect. The change in loss due to

clocking can be correlated to the level of unsteadiness on the airfoil surface (the larger the unsteadiness, the higher

the loss). A reduction of unsteadiness on the airfoil surface invariably results in improved performance. Perfor-

mance of an airfoil row is affected by the magnitude of periodic unsteadiness (deterministic stress) at inlet to that

airfoil row. An increase in inlet deterministic stress results in increased loss for the airfoil row, and therefore,

should be accounted for in a design process. Adverse effects of combustor generated hot streaks on the turbine per-
formance and the rotor heat load can be minimized by aligning the hottest regions of the combustor to the nozzle

guide vane. To ensure realistic prediction of flow through'multistage turbomachines, flow through one representa-

tive period (not one representative passage) needs to be simulated. To model the impact of unsteadiness, a proce-

dure is proposed to compute deterministic stresses/fluxes from a coarse grid unsteady Enler simulation and

incorporate these terms into a steady multistage RANS simulation. This will account for the effects of large-scale
flow features, such as hot streaks, and potential effects on the flow evolution through turbines. RANS steady multi-

stage codes axe superior to viscous multistage steady Euler codes in predicting inlet boundary conditions to the next
airfoil row, exit flow distortions (secondary flow), and exit gas angle distributions.

In summary, a need to account for the effects of periodic unsteadiness was demonstrated for a turbine second

stator through improved performance (loss) and reduced heat load. Two percent improvement in the compressor

efficiency was achieved through the incorporation of body forces and stress terms in a steady multistage RANS

code. Modeling of the effects of body forces from adjacent row airfoils also resulted in improved calculation of the
pressure rise through compressor rotors.

The studies conducted as a part of, and/or in collaboration with, the present program contributed to increased

understanding of the effects of unsteadiness and have resulted in performance improvements in turbomachines.
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APPENDIX A -- DISCUSSION OF EXPERIMENTAL DESIGN APPROACH

Three approaches were used to investigate whether deterministic stresses influence the performance of the

second stator in the large-scale rotating fig (LSRR) configuration. These concepts were developed in parallel with
the acquisition of the new baseline data (28 first stators).

A.1 APPROACH 1

In the first approach, the second stator was redesigned to minimize the heat load and aerodynamic loss.

Analysis indicated that the inlet vorticity from the rotor may be critical in determining the second stator perfor-

mance. The design philosophy was, therefore, to create a uniform second stator exit gas angle distribution to mini-
mize the gap-average spanwise vorticity. To achieve this distribution, three-dimensional (3-D) Euler and Navier-

Stokes codes were used to analyze the flowfield from airfoil geometry designed using the Pratt & Whitney (P&W)

airfoil design system. The 3-D analysis incorporated measured inlet boundary conditions from the original 1 1/2-

stage configuration (22 first stators) and the average exit static pressure previously measured.

Multiple airfoil cross-sections were explored in conjunction with various spanwise stacking of the cross-sec-

tions; the final configuration is shown in Figure 103. The resulting exit angles, loadings, and profile losses from the

Euler (with boundary layer analysis) and Navier-Stokes are shown in Figures 104 through 106. A stereolithography
model was fabricated and examined for the possible incorporation of heat transfer instrumentation on the airfoil
surface.

A.2 APPROACH 2

The second approach consisted of designing a rotor to reduce the gap-average spanwise vorticity entering the

second stator. This was accomplished using the same design procedure, as described for the second stator redesign
(Approach 1); the resulting rotor was a highly 3-D shape, as shown in Figure 107. The resulting angle distribution

showed that a uniform spanwise angle was approximately achieved, and therefore, a reduction of gap-average vor-

ticity (Figure 108). The loading of this design, and the resulting losses from boundary layer analysis, are shown in
Figures 109 and 110. The concern with this approach was that the rotor secondary flow structure would still exist,

and therefore, high deterministic stresses would be present at the inlet to second stator. Since no known design con-

cept has been able to eliminate the secondary flow structure (high vortical motion) and associated stresses, a design
was pursued to contain the structures very close to the endwall. Since P&W has had past success with constant

span fences to control the spanwise movement of secondary flow, this was the approach used to reduce the stress in

the midspan region. Since there is no known available fence design system, fences were designed and developed in

a large-scale/low-speed wind tunnel using the root cross-section of the rotor. On the third design attempt, the vortex

structure was contained near the endwall in both the passage and downstream, and therefore, achieving the design
objective. Actual size fences were then designed for easy installation on the root and tip of the rotor. A sketch of
the fences is shown in Figure 111.

A.3 APPROACH 3

This approach addressed the issue of flow interaction, by determining the performance of the second stator

with the same gas triangles, but with decayed wakes and secondary flow, and different levels of stress. This was

accomplished by placing the rotor of the base rig to its rear most position (closest to the second stator) and then

fabricating inner and outer annular spacer rings to create two additional axial spacings between the rotor and sec-

ond stator. A schematic is shown in Figure 112. Because of the anticipated success of this configuration, this is the
option chosen for the experimental program.
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Figure 103. Second Stator Redesign Combines Stacking and Revortexing To Achieve Desired Flow Conditions
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APPENDIX B -- DESCRIPTION OF LARGE SCALE ROTATING RIG
1-1/2 STAGE TURBINE RIG FACILITY

B.1 DESCRIPTION OF TEST FACILITY

The large-scale rotating rig (LSRR) facility at United Technologies Research Center (UTRC) is of the open cir-
cuit type. Flow enters the rig through a 12-foot diameter inlet at ambient conditions. A 6-inch thick section of hon-

eycomb is mounted at the inlet face to reduce any entrance cross-flow effects. The inlet smoothly contracts the
cross-section to a 5-foot diameter. The flow passes through three sets of fine mesh screens to reduce the turbulence

level. Downstream of the test section, the flow passes through an annular diffuser into a centrifugal blower and is

discharged into the atmosphere. A vortex valve at the blower inlet (downstream of the turbine rig) controls the flow
through the rig. The rig is shown schematically in Figure 113.

The initial portion of the experimental program consisted of acquiring new baseline data for the rig with 28
fast stators. Up to this point, the rig had been operating with 22 fast stators, 28 rotors, and 28 second stators. The

baseline data consisted of airfoil spanwise pressure distributions on all three rows of airfoils, second stator midspan
heat transfer data, and full plane traverse data at the exit of each airfoil row. The rig geometry at which these data

were acquired is shown in Figure 114. The full span traverse data were acquired with a non-nulling 5-hole probe
(oval type head) in the absolute frame behind each stator row and in the relative frame behind the rotor.

Setting the rig operating conditions consisted of iterating the inlet flow to 75 ft/sec by using the inlet total pres-
sure, inlet static pressure, and inlet density. The rig speed was set by adjusting the load until the shaft encoder

recorded a speed of 410 rpm. These rig operating conditions resulted in the flow coefficient and Reynolds numbers

shown in Table 3. The airfoil coordinates are summarized in Tables 4, 5, and 6 for the first stator, Tables 7, 8, and 9
for the rotor, and Tables 10, 11, and 12 for the second stator.

All data were acquired and stored electronically on tape. Computer programs processed the data in an on-line
or off-line mode, depending on the data being processed.

The key portion of the experimental program was to acquire loss data on the second stator at three axial spac-

ings between the rotor and second stator for five first stator/second stator circumferential indexing positions at each

axial spacing. To accomplish this portion of the program, spacers were added to the hub and case of the rig to

change the axial spacing between the second stator leading edge (LE) and the rotor trailing edge (TE). This change
in axial spacing was accomplished to ensure axial spacing between the first stator TE and the rotor LE remained

constant. The axial spacing values at which data were acquired is shown in Figure 114. To accomplish the first sta-

tor/second stator indexing, the first stator ring was modified with five equally-spaced circumferential mounting
holes to mount the first stator ring to the rig. These holes were spaced such that mounting the first stator ring at

each location indexed the first stators with respect to the second stators by 25 percent of a stator pitch. Therefore,

when the first stator ring was indexed from Holes 1 through 5, the stators were indexed by exactly one stator pitch.
The relative circumferential positions of the first to second stator are shown in Figure 115.

The loss data were acquired at the second stator inlet and exit plane at the second stator midspan. These data

were acquired with a kiel probe, which was traversed over two stator pitches. A comprehensive data set is summa-
rized in Appendix C.

151



Table 3. Aerodynamic and Geometric Parameters for Large-Scale Rotating Rig

Parameter First Stotor Rotor Second Stator

ShaftSpeed

Through Flow Velocity (Cx)

Inlet Total Pressure

Inlet Total Temperature

Flow Coefficient (Cx/Um)

Axial Chord (in.)

Number of Airfoils

Aspect Ratio (S/B x)

Tip Clearance/(B z)

Midspan Inlet Metal Angle
(deg) from Tangential

Midspan Exit Metal Angle
(deg) from Tangential

Exit Velocity Absolute Frame
(ft/sec)

Exit Reynolds Number per in.

410 rpm

75.0 ft/sec

Ambient, 1.0 arm

Ambient, 530.0 OR

0.78

6.23

28

0.964

90.0

21.0

210.0

1.09x105

6.34

28

0.946

0.01

42.0

26.0

112.0

1.04x105

6.45

28

0.930

46.0

25.0

165.0

0.86x105

Legend for Tables 4 through 12:

RAD

ROTD

YOFF

X
YPRES

YSUC

RTE

TEMA

TEWA

Section Radius

Rotation of the coordinates about the stacking line

+ value (trailing edge mean camber angle more axial)

- value (trailing edge mean camber angle more tangential)

Staking line location on the airfoil (R0 = YPRES or YSUC - YOFF)
The coordinates must be shifted to achieve a correct radial line

X coordinate

Lower coordinate R0

Upper coordinate R0
Airfoil trailing edge circle radius

Airfoil trailing edge mean camber angle from tangential

Airfoil trailing edge wedge angle
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RAD YOFF ROTE) RTE TEMA TEWA
24.000 4.530 2.550 0.10988 23.510 6.840

Table 4. First Stator Coordinates (Constant Radius, Section 1)

X YPRES ¥SUC

U.U )._)Z_)4 ).93Z_)4

0.059320 5.731017 6. i 74897

0.118640 5.650505 6.255410

O.177960 5.597065 6.308854

0.237280 5.559505 6.346412

0.296600 5.533540 6.372378

0.355920 5.515660 6.390074

0.415240 5.498162 6.406327

0.474560 5.480083 6.421952

0.533880 5.461425 6.436905

0.593200 5.442157 6.451178

0.741500 5.391428 6.483678

0.889800 5.336922 6.511263

1.038099 5.278517 6.533433

1.186399 5.216124 6.549635

1.334700 5.149617 6.559224

i.483000 5.078863 6.561522

1.631299 5.003724 6.555774

1379599 4.924031 6.541155

1.927899 4.839602 6.516750

2.076200 4.750246 6.481636

2.224500 4.655717 6.434777

2.372800 4.555770 6.375116

2.521100 4.450059 6.301601

2.669399 4.338339 6.213168

2.817699 4.220198 6. i 08792

2.966000 4.095206 5.987559

3.114300 3.962868 5.848683

3.262600 3.822608 5.69 ! 515

3.410899 3.673766 5.515681

3.559199 3.515574 5.320966

3.707500 3.347166 5.107466

3.855800 3.167598 4.875420

4.004100 2.975931 4.625218

4.152400 2.771418 4.357356

4.300700 2.553686 4.072423

4.448999 2.323049 3.771061

4.597300 2.080339 3.453983

4.745600 1.826675 3.121941

4.893900 1.563282 2.775686

5.042200 1.291080 2.416018

5.190499 1.01 ! 100 2.043701

5.338799 0.724229 1.659515

5.398120 0.607620 1.502681

5.457439 0.490098 1.344112

5.5 ! 6760 0.371566 1.183858

5.576079 0.252162 1.021960

5.635400 0.131831 0.858465

5.694719 0.010645 0.693411

5.754040 -0.086249 0.526846

5.813360 -0.109530 0.358808

5.872680 -0.097556 O. 18934 1

5.932000 -0.000000 -0.000000
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RAD YOFF ROTD RTE _MA TEWA
27.000 4.990 2.55 0.10988 22.420 6.84

Table 5. First Stator Coordinates (Constant Radius, Section 2)

x YPRES YSUC

U.U O._UIOIZ O._UIOIJ.

0.059320 6385734 7.02% ! 4

0.118640 6305220 7.110127

0.177960 6.451777 7.163571

0.237280 6.414219 7.201129

0.296600 6.388252 7.227096

0.355920 6.370353 7.244769

0.415240 6.352731 7.260880

0.474560 6.334418 7.276229

0.533880 6315411 7.290779

0.593200 6.295690 7.304498

0.741500 6.243258 7.334962

0.889800 6.186240 7.359463

1.038099 6.124480 7.377408

1.186399 6.057821 7.388117

1.334700 5.986043 7.390843

1.483000 5.908972 7.384750

! ,631299 5.826344 7.369001

1.779599 5.737885 7.342593

1.927899 5.643272 7.304532

2.076200 5.542140 7.253724

2.224500 5A34062 7.189085

2.372800 5.318542 7.109488

2.521100 5.195001 7.013876

2.669399 5.062754 6.901218

2.817699 4.920987 6.770595

2.%_00 4.768749 6.621239

3.114300 4.604922 6.452586

3.262600 4A28277 6.264286

3A10899 4.237734 6.056254

3.559199 4.032559 5.828587

3,707500 3.812809 5.581624

3.855800 3.579494 5.315832

4.004100 3.333980 5.031751

4.152400 3.077984 4.730038

4.300700 2.812677 4.411396

4.448999 2.539376 4,076603

4.597300 2.2258724 3.726468

4.745600 1.971685 3.361802

4.893900 1.678823 2.983438

5.042200 1380585 2.592209

5.190499 1.077408 2.188899

5.338799 0.769558 1 .T/4302

5.398120 0.645175 1.605473

5.457439 0.520144 1.435001

5.516760 0.394509 1.262932

5376079 0.2681% 1.089313

5.635400 0.141204 0.914186

5.694719 0.013623 0.737597

5,754040 -0.086249 0.559584

5,813360 -0.109530 0.380189

5.872680 -0.097556 0.199450

5.932000 -0.000000 -0.000000
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RAD YOFF ROTD RTE TEMA TEWA

30.000 5.450 2.55 0.10988 21.210 6.84

Table 6. First Stator Coordinates (Constant Radius, Section 3)

X YPRES YSUC

u.u t .ou_6/. i 7.bUrRS2 /

0.059320 7.386889 7.830770

0.118640 7.306376 7.911283

0.177960 7.252933 7.964726

0.237280 7.215374 8.002285

0196600 7.189407 8.028251

0.355920 7.171492 8.045890

0.415240 7.153745 8.061640

0.474560 7.135189 8.076213

0.533880 7.115813 8.089700

0.593200 7.095606 8.102010

0.741500 7.041376 8.127399

0.889800 6.981698 8.144959

1.038099 6.916318 8.154146

I .I 86399 6.845032 8.1 54509

1.354700 6.767533 8.145548

1.483000 6.683485 8.126675

1.631299 6.592488 8.097393

1.779599 6.494081 8.057024

1.927899 6.387715 8.004932

2.076200 6.272738 7.940394

2.224500 6.148359 7.862688

2.372800 6.013621 7.770950

2.521100 5.867317 7.664369

2.669399 5.708129 7.541998

2.817699 5.534410 7.402905

2.966000 5.344632 7.246008

3.114300 5.137786 7.070239

3.262600 4.914193 6.874393

3.410899 4.675468 6.657235

3.559199 4.423703 6.417642

3.707500 4.160830 6.154808

3.855800 3.888413 5.868458

4.004100 3.607717 5.558789

4.152400 3.319713 5.226550

4.300700 3.02518 ! 4.872856

4.448999 2.724557 4.499182

4.597300 2.418539 4.107169

4.745600 2.107473 3.698550

4.893900 1.791744 3.275075

5.042200 1.471648 2.838350

5.190499 1.147367 2.389950

5.338799 0.819287 1.931245

5.398120 0.686965 1.745163

5.457439 0.554071 1.557703

5.516760 0.420742 1.368945

5.576079 0.286726 1.178940

5.63.5400 0.152112 0.987766

5.694719 0.017003 0.795470

5.754040 -0.086249 0.602115

5.813360 4). 109530 0.407757

5.872680 -0.097556 0.212433

5.932000 -0.000000 -0.000000
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RAD YOFF ROTD RTE T_A TEWA

24.000 3.1171 0.00 0.1900 25.980 5.324

Table 7. Rotor Coordinates (Constant Radius, Section I)

X YPRES YSUC

U.U Z.l_4._O'_/ Z.114._1'9_

0.063410 2.642578 3.058255

0.126820 2.574073 3.189213

0.190230 2.532454 3.310042

0.253640 2.507565 3.422071

0.317050 2.495788 3.526332

0.380460 2.495789 3.623659

0.443870 2.507565 3.714722

0.507280 2.532454 3.800081

0.570690 2.572521 3.880201

0.634100 2.614538 3.955475

0.792625 2.708907 4.124577

0.951150 2.789188 4.269553

1.109674 2.856535 4.393410

1.268199 2.911833 4.498372

1.426724 2.955770 4.586 i 42

1.585250 2.988893 4.658020

1.743774 3.011625 4.715034

1.902300 3.024307 4,757972

2.060824 3.027205 4.787455

2.219350 3.020523 4.803946

2.377874 3.004428 4.807789

2.536399 2.979041 4.799217

2.694924 2.944449 4.778348

2.853449 2.900708 4.745224

3.011974 2.847843 4.699767

3.170500 2.785847 4.64 1819

3.329024 2.714681 4.571112

3.487550 2.634271 4.487248

3.646074 2.544517 4.389718

3.804600 2.445262 4177844

3.963124 2.336329 4.150743

4.121649 2.217483 4.007302

4180174 2.088434 3.846083

4.438699 1948846 3.665222

4.597224 1.798315 3.462717

4.755750 1.636407 3 137349

4.914274 1.462449 2.988995

5.072800 1.275860 2.718733

5.231324 1.075852 2.428502

5.389850 0.861515 2.120841

5.548374 0.631757 1.798331

5.706899 0.385278 1.463487

5.770309 0.281658 1.326585

5.833719 0.174951 1.188185

5.897 129 0.065176 1.048406

5.960539 -0.047920 0.907344

6.023949 -0.141274 0.765113

6.087359 -0.179025 0.621788

6.150769 -0.190000 0.477461

6.214179 -0.179187 0.332199

6.277589 -0.141685 0.186081

6.341000 -0.000000 -0.000000
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RAD YOFF _ RTE TF_A TEWA

27.000 3.6171 0.00 0.190 25.980 5.324

Table 8. Rotor Coordinates (Constant Radius, Section 2)

X YPRES YSUC

U.U .$.")! {3014 3.Y10:)14

0.0634 I0 3.715993 4.124468

0.126820 3.647488 4.240133

O. 190230 3.605869 4.345597

0.253640 3580979 4.442324

0,317050 3569202 4531429

0.380460 3569203 4.613784

0.443870 3580979 4.690091

0507280 3.605869 4.760917

0.570690 3.643682 4.826735

0.634100 3.680748 4.887945

0.792625 3.762573 5.022881

0.951150 3.830230 5.135066

1.109674 3.884964 5.227402

1168199 3.927680 5.302007

1.426724 3.959025 5.360468

1585250 3.979447 5.404005

! .743774 3.989225 5.433540

1.902300 3.988501 5.449780

2.060824 3.977271 5.453254

2.219350 3.955420 5.444344

2.377874 3.922703 5.423305

2536399 3.875751 5.390265

2.694924 3.823067 5.345256

2.853449 3.755038 5.288191

3.011974 3.674091 5.218878

3.170500 3579574 5.136995

3.329024 3.471066 5.042087

3.487550 3.348359 4.933536

3.646074 3111631 4.810525

3.804600 3.061360 4.671988

3.963124 2.898102 4.516526

4.121649 2.722503 4.342320

4180174 2535254 4.146918

4.438699 2.336952 3.928 ! 89

45 97224 2.128133 3.685281

4.755750 1.909256 3.419081

4.914274 1.680757 3.131847

5.072800 1.442969 2.826617

5.231324 1.196291 2506544

5.389850 0.940778 2.174561

5.548374 0.676829 1.833075

5.706899 0.404603 1.484083

5.770309 0.293375 1.342753

5.833719 0.180962 1.200542

5.897129 0.067250 i .057544

5.960539 -0.047761 0.913809

6.023949 4). 141274 0.769413

6.087359 -0.179025 0.624418

6.150769 4). 190000 0.478855

6.214179 -0.179187 0.332767

6.277589 -0.141685 0.186204

6.341000 4).000000 -0.000000

157



RAD YO_ ROTD RTE _ TEWA

30.000 4.1171 0.000 0.190 25.980 5.324

Table 9. Rotor Coordinates (Constant Radius, Section 3)

X YPRES YSUC

U.U 4,Y_P)Yd2$ 4._)_')Z8

0.0634 I0 4.789409 5. ! 91723

O. 126820 4.720902 5 289268

O. 190230 4.679284 5.378238

0.253640 4.654395 5.459727

0..317050 4.642617 5.534590

0.380460 4.642617 5.603510

0.443870 4.654395 5.667048

0.507280 4.679284 5.72.5664

0.570690 4.7 ! 1117 5.779745

0.634100 4.740527 5.829617

0.792625 4.804027 5.937627

0.951150 4.854 175 6.02_23

!. 109674 4.891876 6.092466

1.268199 4.917761 6.143572

1.426724 4.932235 6. ! 79105

1.585250 4.935519 6.200087

1.743774 4.927660 6.207289

1.902300 4.908542 6.201283

2.060824 4.877872 6.182473

2.219350 4.835148 6.151113

2.377874 4.779667 6.107325

2.536399 4.710367 6.05 i 112

2.694924 4.625827 5.982346

2.853449 4.524091 5.900775'

3.0 ! 1974 4.402612 5.805990

3.170500 4.259274 5.697424

3 329024 4.093709 5 .574307

3.487550 3.908832 5.435608

3.64607 4 3.708482 5 .279967

3.804600 3.495772 5.105564

3.963124 3.272803 4.909987

4.121649 3.041380 4.690133

4.280174 2.802365 4.444331

4.438699 2.556817 4.173303

4597224 2.305195 3.880044

4.755750 2.048160 3.568663

4.914274 1.786127 3.243157

5.072800 ! .519417 2.906872

5.231324 !.248415 2.562467

5.389850 0.973304 2.211964

5.548374 0.694339 1.856716

5.706899 0.411773 1.497858

5.770309 0.297712 1.353492

5.833719 0.183149 1.208697

5.897129 0.067939 1.063536

5.960539 -0.047643 0.918034

6.023949 -0.141274 0.772206

6.087359 -0.179025 0.626092

6.150769 -0.190000 0.479718

6.214179 -0.179187 0.333102

6.277589 -0.141685 O. 186250

6.341000 -0.000000 -0.000000
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RAD

24.000

70_ ROTD _ _ Th-_VA

3.680 0.000 0.190 25.00 6.500

Table 10. Second Sm_r Coordinates (Constant Radius, Sections 1)

X YPRES YSUC

U.UUUUU _.O_ZO_ S.C_ZO_

0.06452 3.48015 3.89472

0.12904 3.41120 4.01869

0.19356 3.36955 4.13494

0.25808 3.344.93 4.24410

0.32260 3.33372 4.34672

0.38712 3.33462 4.44324

0.45164 3.34773 4.53408

0.51616 3.37461 4.61958

0.58068 3.41583 4.70006

0.64520 3.45739 4.77578

0.80650 3.55269 4.94580

0.96780 3.63560 5.09069

1.12910 3.70599 5.21287

1.29040 3.76376 5.31424

1.45170 3.80880 5.39634

1.6 i 300 3.84106 5.46037

1.77430 3.86048 5.50735

1.93560 3.86704 5.53806

2.09690 3.86072 5.55317

2.25820 3.84153 5.55319

2.41950 3.80950 5.53852

2.58080 3.76468 5.50948

2.74210 3.70714 5.46629

2.90340 3.63698 5.40908

3.06470 3.55430 5.33790

3.22600 3.45921 5.25273

3.38730 3.35168 5.15348

3.54860 3.23245 5.03995

3.70990 3.10111 4.91189

3.87120 2.95802 4.76892

4.03250 2.80339 4.61058

4.19380 2.63745 4.43628

4.35510 2.46037 4.24527

4.51640 2.27244 4.03662

4.67770 2.07384 3.80928

4.83900 1.86483 3.56222

5.00030 1.64569 3.29479

5.16160 1.41663 3.00662

5.32290 1.17789 2.69784

5.48420 0.92975 2.36890

5.64550 0.67246 102068

5.80690 0.40629 1.65431

5.87132 0.29738 1.50296

5.93084 O. 187 I0 1.34900

6.00036 0.07548 1.19252

6.06488 -0.03748 !.03361

6.12940 -0.13603 0.87238

6.19392 -0.17738 0.70890

6.25844 .0.18997 0.54327

6.32296 -0.17996 0.37560

6.38748 -0.14267 0.20595

6.45200 0.00000 0.00000
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RAD YOFF ROTD RTE TEMA TEWA
27.000 3.680 0.00 0.190 25.000 6.500

Table 11. Second Stator Coordinates (Constant Radius, Section 2)

X YPRZS YSUC

U.UOUUU 4.1UZYl 4.1U/_1

0.06452 3.89750 4.30650

0.12904 3.82830 4.40610

0.19356 3.78700 4.50013

0.25808 3.76200 4.58895

0.32260 3.75100 4.67285

0.38712 3.75200 4.75210

0.45164 3.77650 4.82695

0.51616 3.79454 4.89760

0.58068 3.83206 4.96425

0.64520 3.86762 5.02707

0.80650 3.94796 5.16834

0.96780 4.01599 5.28865

1.12910 4.07162 5.38963

1.29040 4. I 1482 5.47259

1.45170 4.14552 5.53859

1.61300 4.16371 5.58849

1.77430 4.16934 5.62296

1.93560 4.16244 5.64258

2.09690 4.14298 5.64778

2.25820 4.11101 5.63888

2.41950 4.06655 5.61615

2.58080 4.00965 5.57973

2.74210 3.94037 5.52972

2.90340 3.85879 5.46611

3.06470 3.76498 5.38882

3.22600 3.65906 519771

3.38730 3.54111 5.19255

3.54860 3.41127 5.07300

3.70990 3.26967 4.93863

3.87120 3.11644 4.78891

4.03250 2.95172 4.62316

4.19380 2.77568 4.44053

4.35510 258849 4.24001

4.5 i 640 2.39030 4.02052

4.67770 2.18130 3.78134

4.83900 i.%166 3.52218

5.00030 1.73160 3.24330

5.16160 1.49128 2.94535

5.32290 114090 2.62941

5.484.20 0.98064. 2.29682

5.64550 0.71074 1.94914

5.80680 0.43141 158790

5.87132 0.31707 1.43996

5.93584 0.20126 1.29018

6.00036 0.08400 1.13867

6.06488 -0.03471 0.98552

6.12940 -0.13607 0.83080

6.19392 -0.17738 0.67459

6.25844 -0.18997 0.51699

6.32296 -0.18008 0.35805

6.38748 -0.14267 O. 19786

6.45200 0.00000 0.00000
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RAD _ ROTD RTE _ TEWA

30.000 3.680 0.00 0.190 24.990 4.090

Table 12. Second Stator Coordinates (Constant Radius, Section 3)

X YPRES YSUC

O.U[.MJUU 4._) J42'9 4..% ._47'9

0.06452 4.33178 4.73679

O. i 2904 4.26282 4.8 i 836

0.19356 4.22116 4.89463

0.25808 4.19652 4.96641

0.32260 4.18530 5.03396

0.38712 4.18619 5.09751

0.45164 4.19929 5.15728

0.51616 4.22602 5.21343

0.58068 4.25762 5.26613

0.64520 4.28729 5.31552

0.80650 4.35297 5.42538

0.96780 4.40647 5.51708

I. 12910 4.44777 5.59199

1.29040 4.47688 5.65117

1.45170 4.49364 5.69551

1.61300 4.49819 5.72567

1.77430 4.49045 5.74219

1.93560 4.47047 5.74550

2.09690 4.43822 5.73590

2.25820 4.39375 5.71360

2.41950 4.33706 5.67874

2.58080 4.26823 5.63135

2.74210 4.18728 5.57140

2.90340 4.09426 5.49876

3.06470 3.98924 5.41323

3.22600 3.87229 5.31449

3.38730 3.74348 5.20215

3.54860 3.60289 5.07566

3.70990 3.45062 4.93435

3.87120 3.28675 4.77738

4.03250 3.11139 4.60366

4.19380 2.92465 4.41196

4. 35510 2.72666 4.20188

4.51640 2.51749 3.97077

4.67770 2.29731 3.72077

4.83900 2.06620 3.45177

5.00030 1.82436 3.16495

5.16160 1.57187 2.86176

5.32290 1.30689 2.54389

5.48420 1.03553 2.21304

5.64550 0.75199 1.87091

5.80680 0.45841 1.51902

5.87132 0.33818 1.37585

5.93584 0.21639 1.23140

6.00036 0.09302 1.08577

6.06488 -0.03190 0.93902

6.12940 -0.13607 0.79122

6.19392 .0.17738 0.64244

6.25844 .0.18996 0.49272

6.32296 .0.17995 0.34214

6.38748 .0.14267 O. 19073

6.45200 0.0000(3 0.00000
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Figure 113. Schematic of United Technologies Research Center Test Facility
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3

0.27 Bx

0.014 m 2 1 0.018 m 0

_,0._in.) I0._-;96B ----I I---- (0.70in.)

1301in')0-610m z_

Gap (X2/Bx-Rotor) X2 (in.) X 1 (in.)

0.30 2.485 4.823

0.55 3.485 4.823

0.71 4.485 4.823

Axial Spacing Program
- Midspan Loss
- Steady Loadings
- Heat Transfer

Gap (X2/Bx-Rotor) X2 X1 (in.)

0.54 3.39 4.05
and/or
0.75 4.73 2.71

Full Traverse Plane Program
- Full Span Angles/Pressures
- Full Span Loadings
- Unsteady Loadings (P&W Data)
- Heat Transfer Data

719g_xlr

Figure 114. Schematic of Large-Scale Rotating Rig Geometric Test Parameters
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Figure 115. Schematic of First to Second Stator Clocking Positions
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APPENDIX C m LARGE-SCALE ROTATING RIG 1 1/2-STAGE RIG BASELINE DATA

The objective of this appendix is to present data acquired in the large-scale rotating rig CLSRR) for the baseline

rig configuration consisting of 28 first stators, 28 rotors, and 28 second stators at a first stator/rotor nominal spac-

ing. The rig had been configured with 22 first stators, 28 rotors, and 28 second stators until recently; therefore, it

was necessary to document the rig flowfield for this configuration (new baseline). The aerodynamic data docu-

mented acquired were airfoil, spanwise pressure distributions on all three rows of airfoils (shown in Sections 6 and

7), second stator midspan heat transfer data (shown in Sections 6 and 7), and full plane traverse data at the exit of

each airfoil row (shown in Appendix C). The rig geometry at which these data were acquired is described in
Appendix B.

The data to be presented have been divided into three sections: first stator, rotor, and second stator. By this

means, each section can be extracted as a whole for any subsequent analysis or use of the data. Also, the plots
should be of such a scale and gfidded appropriately enough so that parameter values may be easily obtained from
them, if necessary.

No attempt has been made to deduce or infer any particular point or conclusion in any of these sections, as

these have been handled in the main body of the text. Nor is there any attempt to discuss in length any of the data

presented other than to describe what is being shown, the conditions under which the data were acquired, and the

rig geometry, as applicable. The principal objective is to present the data that were acquired during the course of
the investigation from which the conclusions made in the main body were based. These three sections and the data
contained in them are briefly described below.

Table 13 presents full span traverse results for the three airfoil exit planes. The data acquired at the first stator

and second stator exit planes were acquired in the absolute frame of reference. The data acquired at the rotor exit
plane were acquired in the relative frame of reference. The first stator exit plane is denoted as STA 1, the rotor exit

plane is denoted as STA 2, and the second stator exit plane is denoted as STA 3. These locations are shown in Fig-
ure B-2. These data were acquired with a five-hole probe over two airfoil pitches. These data are compared with the

data acquired in the original 22/28/28 rig configuration. Also shown in this appendix are contour plots of relative

total pressure coefficient, absolute total pressure coefficient, rotary total pressure coefficient, static pressure coeffi-
cient, relative and absolute velocity ratio, and velocity vector plots.
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Table 13. Nomenclature for Appendix C

Nome_lature Definition

CP

CPTABSM

CPSA

cFrRELM

CPROTM

CTANlVl

CTANA

CTOT

CTOTM

CTOTA

CRA

CXA

Cx

CxAJm

P

P0

PCSPAN

PHIABSA

PHIRELA

FrREL

lrI'ROT

QUM

S

STA1

STA2

STA3

Pressure coefficient (P0" P)/QUM

Mass-averaged absolute total poressurecoefficient(P0 -PTABS)/QUM

Area-averaged static pressure coefficient = (P0" PSA)/QuM

Mass-averaged relative total pressure coefficient = (P0" PrREL)/QUM

Mass-averaged rotary total pressure coefficient = (P0" IrfROT)/QuM

Mass-averaged absolute tangential velocity ratio = CTANM/U m

Area-averaged absolute tangential velocity ratio = CTANA/U m

Total absolute velocity

Mass-averaged absolute total velocity ratio = CTOT/U m

Area-averaged absolute total velocity ratio = CTOT/U m

Area-averaged radial velocity ratio = CRY U m

Area-averaged axial velocity ratio = CX/U m

Rig inlet average midspan axial flow velocity, ft/sec

Rig flow coefficient

Static pressu_, psia

Rig inlet total pressure, psia

Percent of airfoil span = OR - Rhub)/(Rtip-Rhub)* 100

Area-averaged absolute pitch angle, deg

Area-averaged relative pitch angle, deg

Relative total pressure -- (FrREL = P+Qlocal)

Rotary total pressure = (FIROT=P_)

1/2 P0CTOT 2

Dynamic pressure= I/2P0Um 2,psia

Airfoilspan,inches

Station1 - IV exitplane

Station 2 - IB exit plane

Station 3 - 2V exit plane
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Table 13. Nomenclature for Appendix C (Continued)

Nomenclature Definition

TNCTMCXA

"IWWTMCXA

U m

WTANA

WTANM

WTOTA

WTOTM

YAWABSA

YAWRELA

X

XI

X2

Po

r

Area averaged absolute yaw angle = tan" I(CTANM/CXA)

Area averaged relative yaw angle = tan'I(WTANM/CXA)

Rotor midspan wheel speed, ft/sec

Area-averaged relative tangential velocity ratio = WTANA/U m

Mass-averaged relativetangentialvelocityratio= WTANM/U m

Area-averaged relative total velocity ratio = WTOTA/U m

Mass-averaged relative total velocity ratio = WTOTM/U m

Area-averaged absolute yaw angle, deg

Area-averaged relative yaw angle, deg

Airfoil axial location from leading edge, inches

Axial distance from leading edge of rotor to Wailing edge of first stator, inches

Axial distance from trailing edge of rotor to leading edge of second stator, inches

Rig inlet density, slugs/ft 3

Radius, inches

The data were acquired with a five-hole probe (oval-shaped head) that was calibrated using the non-nulling
calibration technique. After the data were acquired, the probe was calibrated a second time, and some of the data

was re-reduced. This was done to check the probe calibration, and the data as the non-nulling technique was done

for the first time in the LSRR facility. Until this time, all five-hole traversing had been done using the probe hull-

ing (yaw nulling) technique. The advantage of the non-nuUing technique is that the time required to acquire a
plane of data is considerably less than that for the yaw hulling technique.

The data are presented for the three airfoil exit planes, starting with the first stator exit plane denoted as STA1.
The data for the rotor exit plane are denoted as STA2, and the second stator exit plane is denoted as STA3. The

data are presented as various spanwise mass-averaged or area-averaged quantifies, which are defined below, versus

the nondimensional spanwise distance from hub to tip. The mass-average and the area-average of a quantity "F'
are defined as follows:

FMA = Mass-average of"F" = f rFCx dO / J rCx dO

FAA = Area-average of "F' = J Fd0 / _ dO

The choice of which average is important is based on through flow analysis considerations (Joslyn, et al.
[1986]).
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At the end of the traverse dam for each airfoil row, contour and vector plots are presented for each plane. For

the vector plots, the radial component of velocity has been removed so that the plots show the tangential compo-

nent as it appears coming from the plane.

Finally, all parameters are nondimensional, except for the flow angles, which are presented in degrees. All
velocities are normalized by the rotor mean midspan wheel speed, U m, and the pressures are normalized by the

dynamic pressure, Qm"

Full span traverse results for the first stator, rotor, and second stator are shown in the figures that follow the text

portion of this appendix (Figures 116 through 208).

References for Appendix C:

Joslyn, D. and Dring, R.P., Three-Dimensional Flow in an Axial Turbine: Part I - Aerodynamic Mechanisms, .L

of Turbomaehinery.. Vol. 114, 1992, pp. 61-70.

168



FirstStator Exit Flowfield Data (28 Airfoil Count) Acquired at X2/B x - rotor = 0.746, 0.54, Cx/U = 0.78

Compared to Data Acquired as Part of Air Force Office of Scientific Research Contract

(STA1)

,Legend for STA1

C) AFOSR X_B x = 0.75

[-7 New Baseline X2/B x = 0.75

85784._1r
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Rotor Exit Flowfield Data (28 Airfoil Count) Acquired at X2/B x - rotor = 0.746, Cx/U = 0.78

Compared to Data Acquired as Part of Air Force Office of Scientific Research Contract

(STA2)

Legend for STA2

O AFOSR X2/B x = 0.75

r--] New Baseline X2/B x = 0.75

<) New Baseline X2/Bx = 0.54
85785.cdr
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Second Stator Exit Flowfield Data (28 Airfoil Count) Acquired at X2/B x - rotor = 0.746, 0.54, Cx/U = 0.78

in Relative Frame

Compared to Data Acquired as Part of Air Force Office of Scientific Research Contract

(STA3)

Legend for STA3

O AFOSR X_B x = 0.75

[-] New Baseline X2/B x = 0.75

New Baseline X_B x = 0.54
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APPENDIX D -- SYNOPSIS OF PROPOSED PROGRAM

This appendix is a synopsis of the proposed program, Performance and Heat Load Predictions for Multistage
Turbines, 11 August 1989 (Proposal Number 87-1223).

The understanding of unsteady flows in turbomachines prior to the start of the contract in 1990 is discussed in

this appendix. The turbine design community recognized that the impact of unsteadiness was significant, and it

needed to be accounted for in the design process. It was known that unsteadiness resulted in the following:

• Early transition of boundary layers

• Excessively high temperatures in turbine rotor blades

• Separation of boundary layers for airfoils operating at low Reynolds numbers

• Periodic breaking up of secondary flow vortices in turbines.

The impact of some of these effects will be reviewed in more detail to lay the groundwork for the current
investigation.

Wakes from upstream airfoil rows have a significant effect on the performarlce and heat load characteristics of

downstream airfoil rows. The time-averaged influence of upstream wakes on the boundary layer thickness and heat

transfer coefficient on the suction side of two turbine rotor airfoils are shown in Figures 209 and 210. Also shown
in Figure 209 is the data obtained for these airfoils in steady cascade configurations and calculated results from a

bounda_ layer code. The steady cascade data show good agreement with two-dimensional (2-D) transitional

boundary layer calculations. The time-averaged data, from the rotor affected by wakes from the upstream nozzle

vane, lie between the transitional and fully turbulent calculations. These figures indicate that boundary layer transi-
tion is influenced by the wakes from the upstream airfoil. Steady cascade data with large levels of inlet turbulence

can also produce a similar characteristics. Since wakes contain high levels of turbulence, the periodic high turbu-
lence level could be considered responsible for this change in the boundary layer characteristics.

The upstream row distortions (wakes, secondary flow structures turbulence) not only affect the airfoil bound-

ary layers of downstream rows, but also influence the secondary vortical flow structure in the downstream row pas-
sages. This phenomenon is graphically shown in Figure 211, where the rotor exit relative total pressure contours

are shown at an instant in time for three different positions of the upstream stator. In this figure, the residence time

of the fluid particles in the rotor passage is accounted for so that the exit flowfield corresponds to the given inlet
flowfield. When the inlet flow is uniform, the exit flow exhibits the presence of three distinct vortices due to the

hub and tip secondary flows and the tip leakage flows. When the upstream stator distortion is present in the rotor

flowfield, the hub and tip secondary flow vortices exhibit a different structure, while the tip leakage vortex stays
relatively constant.

Secondary flow vortices from upstream airfoils can significantly alter the flowfield in the downstream airfoil

rows. Work performed by Pratt & Whitney (P&W) in the University of Connecticut water tunnel showed that when

an upstream vortex passed through a downstream cascade passage, the secondary flow pattern in the passage was
significantly affected. The upstream secondary flow was generated by a low turning airfoil suspended in the central

part of the inlet duct generating inner and outer tip vortices, similar to the flow generated by a high turning
upstream airfoil.

This flow then propagated downstream to a typical turbine airfoil, as shown schematically in Figure 212. Laser

techniques were used to show the flow patterns at the low turning airfoil exit and across the throat of the high turn-
ing downstream airfoil. These flow patterns are shown in Figure 213, where Figure 213(a) shows the two inlet vor-

tices entering the cascade. Figure 213(b) shows that when these inlet vortices enter near the cascade suction side,
they propagate through the cascade and hug the suction side. Figure 213(c through e) shows three snapshots in time

when these vortices entered near the pressure side indicating highly unstable flow in a steady flow condition.
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Although a relatively simple experiment, it visually shows that a vortex from an upstream airfoil row can have a

significant effect on the secondary flow generation for the downstream row.

This same effect is observed in the data obtained in the United Technologies Research Laboratory (UTRC)

large-scale rotating rig (LSRR), as shown in Figure 214, as the spanwise distribution of circumferential averaged

exit gas angles for the rotor and second stator. The geometries for these airfoil rows are almost identical, as shown

in Figure 215, but the angle profiles exiting each of the airfoil rows is quite different, as shown in Figure 214.

These angles indicate that there is large secondary flow in the rotor passage, but very tittle secondary flow in the

second stator passage. The second stator angle is essentially inverted, relative to the rotor. This rig data and the data
from the water tunnel indicated inlet secondary flow can significantly impact the flow in the downstream airfoil.

The impact of this phenomenon on the airfoil performance is still not well understood.

In addition to the incoming wakes and secondary flow vortices, the flowfield in an airfoil row is also influ-

enced by temperature distortions generated in the burner upstream of the turbine. This effect of temperature distor-

tion was experimentally assessed in the UTRC LSRR. It was demonstrated that the first stator flowfield was

unaffected by the inlet temperature profile. The rotor flowfield, however, appeared to be affected, as shown by the

CO 2 concentration and redistribution in Figure 216 for two inlet temperature distortions. Numerical simulations

conducted with a three-dimensional (3-D), unsteady Euler analysis showed that the hot streak convects through the

vane and then impinges on the rotor pressure surface (Figure 217). Since the resonant time on the pressure surface

was longer than the suction surface, the time-averaged temperature on the pressure side was greater than the aver-

age inlet temperature, as shown in Figure 218. To confirm that this hotter pressure side was a result of periodic
interaction, the Euler analysis was run steady (with a mixing plane) and unsteady. The results show that the time-

averaged unsteady agrees much better with the measured data, as shown in Figure 219. This again shows the sig-
nificance of inlet flow distortion and the impact of unsteadiness on the time-averaged flowfield.

In summary, the influence of turbulence from upstream wakes on the boundary layer characteristics of down-
stream airfoil rows has been documented and first order models have been formulated to simulate these effects.

The influence of periodic flow distortion, such as wakes and secondary flow, on downstream airfoil performance

requires further investigation.
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Figure 209. Measured Stanton No. Distribution on Rotor Falls
Between Cascade Data and Turbulent Calculations
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Figure 210. Heat Transfer Coefficient Data, Measured on Airfoil Suction Surface in Turbine Cascade,

at Two Levels of Background Turbulence, With Unsteadiness Generated by Rotating Bar,

Upstream of Cascade, Indicate That Upstream Wakes Have Significant Effects on

Laminar Boundary Layers and Little Effect on Turbulent Boundary Layers
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Figure 211. Relative Total Pressure Contours Upstream and Downstream of Rotor Indicating Change

in Organized Flow Structures, as Affected by Upstream Circumferential Distortion
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Figure 212. Water Tunnel Geometry of Turbine Airfoil Cascade and Vortex Generator
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Flow Vlz Patterns at Cascade Inlet and Throat With Inlet Vortices
Entering G_ade Near Suction Side
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Figure 213. Flow Visualization Patterns at Cascade hzlet and Gage Plane When Inlet Vortices
Entered Cascade Near Pressure and Suction Side of Cascade Ai_. oils
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Figure 215. Rotor and Second Stator Mean Section Shows That Both Airfoils Have Almost

Identical Cross-Section Geometry
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Figure 216. Inlet Total Temperature Distortion Results in Increased Magnitudes of Secondary Flows
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Figure 217. Snapshot in Time of 3-D Unsteady Euler Simulation of Hot Streak in LSRR Stage Turbine;

Hot Streak Convects Through Stator Passage With No Distortion and Then Interacts With Passing Rotor
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Figure 218. Time Average of Unsteady Flow Simulation Predicts Hotter Temperature on Rotor Airfoil Pressure

Side, This Temperature Is Higher Than Average Temperature at Rotor Inlet

and Is in AgreementWith Experimental Data
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