262 research outputs found

    Effects of Topically Applied Acitretin in Reconstructed Human Epidermis and the Rhino Mouse

    Get PDF
    Oral acitretin is currently indicated for the treatment of severe psoriasis in adults, but its use is limited by systemic side effects and teratogenicity. Topical administration of acitretin may lessen the risk of systemic toxicity while increasing local bioavailability in the skin. The effects of topical acitretin on reconstructed human epidermis (RHE) and Rhino mice were investigated and compared to those of currently marketed topical retinoids: tretinoin and tazarotene. In acitretin-treated RHE cultures, there was a reduction in keratohyalin granules and filaggrin expression in the stratum granulosum, a loss of keratin 10 expression in the stratum spinosum, and an increase in keratin 19 expression in all viable cell layers. All retinoids showed similar signs of activity in RHE cultures. Furthermore, the release of pro-inflammatory cytokines IL-1α and IL-8 in RHE cultures was less pronounced with acitretin compared to tretinoin- and tazarotene-containing formulations, suggesting that acitretin may be less irritating. In Rhino mice, acitretin induced a local, dose-dependent reduction in utricle diameter after seven daily dermal doses. A similar effect was observed in tretinoin- and tazarotene-treated mice. Our data suggest that topical application of acitretin may have a therapeutic benefit in the local management of keratinization disorders

    Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations

    Get PDF
    AbstractThe 2 major types of neurodegeneration with brain iron accumulation (NBIA) are the pantothenate kinase type 2 (PANK2)-associated neurodegeneration (PKAN) and NBIA2 or infantile neuroaxonal dystrophy (INAD) due to mutations in the phospholipase A2, group VI (PLA2G6) gene. We have recently demonstrated clinical heterogeneity in patients with mutations in the PLA2G6 gene by identifying a poorly defined subgroup of patients who present late with dystonia and parkinsonism. We report the clinical and genetic features of 7 cases with PLA2G6 mutations. Brain was available in 5 cases with an age of death ranging from 8 to 36 years and showed widespread alpha-synuclein-positive Lewy pathology, which was particularly severe in the neocortex, indicating that the Lewy pathology spread corresponded to Braak stage 6 and was that of the “diffuse neocortical type”. In 3 cases there was hyperphosphorylated tau accumulation in both cellular processes as threads and neuronal perikarya as pretangles and neurofibrillary tangles. Later onset cases tended to have less tau involvement but still severe alpha-synuclein pathology. The clinical and neuropathological features clearly represent a link between PLA2G6 and parkinsonian disorders

    Iatrogenic cerebral amyloid angiopathy: an emerging clinical phenomenon

    Get PDF
    In the last 6 years, following the first pathological description of presumed amyloid-beta (Aβ) transmission in humans (in 2015) and subsequent experimental confirmation (in 2018), clinical cases of iatrogenic cerebral amyloid angiopathy (CAA)—attributed to the transmission of Aβ seeds—have been increasingly recognised and reported. This newly described form of CAA is associated with early disease onset (typically in the third to fifth decade), and often presents with intracerebral haemorrhage, but also seizures and cognitive impairment. Although assumed to be rare, it is important that clinicians remain vigilant for potential cases, particularly as the optimal management, prognosis, true incidence and public health implications remain unknown. This review summarises our current understanding of the clinical spectrum of iatrogenic CAA and provides a diagnostic framework for clinicians. We provide clinical details for three patients with pathological evidence of iatrogenic CAA and present a summary of the published cases to date (n=20), identified following a systematic review. Our aims are: (1) To describe the clinical features of iatrogenic CAA, highlighting important similarities and differences between iatrogenic and sporadic CAA; and (2) To discuss potential approaches for investigation and diagnosis, including suggested diagnostic criteria for iatrogenic CAA

    Novel homozygous variants in PRORP expand the genotypic spectrum of combined oxidative phosphorylation deficiency 54

    Get PDF
    Biallelic hypomorphic variants in PRORP have been recently described as causing the autosomal recessive disorder combined oxidative phosphorylation deficiency type 54 (COXPD54). COXPD54 encompasses a phenotypic spectrum of sensorineural hearing loss and ovarian insufficiency (Perrault syndrome) to leukodystrophy. Here, we report three additional families with homozygous missense PRORP variants with pleiotropic phenotypes. Each missense variant altered a highly conserved residue within the metallonuclease domain. In vitro mitochondrial tRNA processing assays with recombinant TRMT10C, SDR5C1 and PRORP indicated two COXPD54-associated PRORP variants, c.1159A>G (p.Thr387Ala) and c.1241C>T (p.Ala414Val), decreased pre-tRNAIle cleavage, consistent with both variants impacting tRNA processing. No significant decrease in tRNA processing was observed with PRORP c.1093T>C (p.Tyr365His), which was identified in an individual with leukodystrophy. These data provide independent evidence that PRORP variants are associated with COXPD54 and that the assessment of 5' leader mitochondrial tRNA processing is a valuable assay for the functional analysis and clinical interpretation of novel PRORP variants

    Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study.

    Get PDF
    OBJECTIVE: To determine whether whole genome sequencing can be used to define the molecular basis of suspected mitochondrial disease. DESIGN: Cohort study. SETTING: National Health Service, England, including secondary and tertiary care. PARTICIPANTS: 345 patients with suspected mitochondrial disorders recruited to the 100 000 Genomes Project in England between 2015 and 2018. INTERVENTION: Short read whole genome sequencing was performed. Nuclear variants were prioritised on the basis of gene panels chosen according to phenotypes, ClinVar pathogenic/likely pathogenic variants, and the top 10 prioritised variants from Exomiser. Mitochondrial DNA variants were called using an in-house pipeline and compared with a list of pathogenic variants. Copy number variants and short tandem repeats for 13 neurological disorders were also analysed. American College of Medical Genetics guidelines were followed for classification of variants. MAIN OUTCOME MEASURE: Definite or probable genetic diagnosis. RESULTS: A definite or probable genetic diagnosis was identified in 98/319 (31%) families, with an additional 6 (2%) possible diagnoses. Fourteen of the diagnoses (4% of the 319 families) explained only part of the clinical features. A total of 95 different genes were implicated. Of 104 families given a diagnosis, 39 (38%) had a mitochondrial diagnosis and 65 (63%) had a non-mitochondrial diagnosis. CONCLUSION: Whole genome sequencing is a useful diagnostic test in patients with suspected mitochondrial disorders, yielding a diagnosis in a further 31% after exclusion of common causes. Most diagnoses were non-mitochondrial disorders and included developmental disorders with intellectual disability, epileptic encephalopathies, other metabolic disorders, cardiomyopathies, and leukodystrophies. These would have been missed if a targeted approach was taken, and some have specific treatments

    Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2.

    Get PDF
    Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms

    Neuromuscular disease genetics in under-represented populations: increasing data diversity

    Get PDF
    Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses ‘solved’ or ‘possibly solved’ ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% ‘solved’ and ∼13% ‘possibly solved’ outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally

    100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care — Preliminary Report

    Get PDF
    BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.)

    Baseline factors associated with early and late death in intracerebral haemorrhage survivors

    Get PDF
    Background and purpose: The aim of this study was to determine whether early and late death are associated with different baseline factors in intracerebral haemorrhage (ICH) survivors. Methods: This was a secondary analysis of the multicentre prospective observational CROMIS‐2 ICH study. Death was defined as ‘early’ if occurring within 6 months of study entry and ‘late’ if occurring after this time point. Results: In our cohort (n = 1094), there were 306 deaths (per 100 patient‐years: absolute event rate, 11.7; 95% confidence intervals, 10.5–13.1); 156 were ‘early’ and 150 ‘late’. In multivariable analyses, early death was independently associated with age [per year increase; hazard ratio (HR), 1.05, P = 0.003], history of hypertension (HR, 1.89, P = 0.038), pre‐event modified Rankin scale score (per point increase; HR, 1.41, P < 0.0001), admission National Institutes of Health Stroke Scale score (per point increase; HR, 1.11, P < 0.0001) and haemorrhage volume >60 mL (HR, 4.08, P < 0.0001). Late death showed independent associations with age (per year increase; HR, 1.04, P = 0.003), pre‐event modified Rankin scale score (per point increase; HR, 1.42, P = 0.001), prior anticoagulant use (HR, 2.13, P = 0.028) and the presence of intraventricular extension (HR, 1.73, P = 0.033) in multivariable analyses. In further analyses where time was treated as continuous (rather than dichotomized), the HR of previous cerebral ischaemic events increased with time, whereas HRs for Glasgow Coma Scale score, National Institutes of Health Stroke Scale score and ICH volume decreased over time. Conclusions: We provide new evidence that not all baseline factors associated with early mortality after ICH are associated with mortality after 6 months and that the effects of baseline variables change over time. Our findings could help design better prognostic scores for later death after ICH

    Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial.

    Get PDF
    BACKGROUND: Pregnant women with type 1 diabetes are a high-risk population who are recommended to strive for optimal glucose control, but neonatal outcomes attributed to maternal hyperglycaemia remain suboptimal. Our aim was to examine the effectiveness of continuous glucose monitoring (CGM) on maternal glucose control and obstetric and neonatal health outcomes. METHODS: In this multicentre, open-label, randomised controlled trial, we recruited women aged 18-40 years with type 1 diabetes for a minimum of 12 months who were receiving intensive insulin therapy. Participants were pregnant (≤13 weeks and 6 days' gestation) or planning pregnancy from 31 hospitals in Canada, England, Scotland, Spain, Italy, Ireland, and the USA. We ran two trials in parallel for pregnant participants and for participants planning pregnancy. In both trials, participants were randomly assigned to either CGM in addition to capillary glucose monitoring or capillary glucose monitoring alone. Randomisation was stratified by insulin delivery (pump or injections) and baseline glycated haemoglobin (HbA1c). The primary outcome was change in HbA1c from randomisation to 34 weeks' gestation in pregnant women and to 24 weeks or conception in women planning pregnancy, and was assessed in all randomised participants with baseline assessments. Secondary outcomes included obstetric and neonatal health outcomes, assessed with all available data without imputation. This trial is registered with ClinicalTrials.gov, number NCT01788527. FINDINGS: Between March 25, 2013, and March 22, 2016, we randomly assigned 325 women (215 pregnant, 110 planning pregnancy) to capillary glucose monitoring with CGM (108 pregnant and 53 planning pregnancy) or without (107 pregnant and 57 planning pregnancy). We found a small difference in HbA1c in pregnant women using CGM (mean difference -0·19%; 95% CI -0·34 to -0·03; p=0·0207). Pregnant CGM users spent more time in target (68% vs 61%; p=0·0034) and less time hyperglycaemic (27% vs 32%; p=0·0279) than did pregnant control participants, with comparable severe hypoglycaemia episodes (18 CGM and 21 control) and time spent hypoglycaemic (3% vs 4%; p=0·10). Neonatal health outcomes were significantly improved, with lower incidence of large for gestational age (odds ratio 0·51, 95% CI 0·28 to 0·90; p=0·0210), fewer neonatal intensive care admissions lasting more than 24 h (0·48; 0·26 to 0·86; p=0·0157), fewer incidences of neonatal hypoglycaemia (0·45; 0·22 to 0·89; p=0·0250), and 1-day shorter length of hospital stay (p=0·0091). We found no apparent benefit of CGM in women planning pregnancy. Adverse events occurred in 51 (48%) of CGM participants and 43 (40%) of control participants in the pregnancy trial, and in 12 (27%) of CGM participants and 21 (37%) of control participants in the planning pregnancy trial. Serious adverse events occurred in 13 (6%) participants in the pregnancy trial (eight [7%] CGM, five [5%] control) and in three (3%) participants in the planning pregnancy trial (two [4%] CGM and one [2%] control). The most common adverse events were skin reactions occurring in 49 (48%) of 103 CGM participants and eight (8%) of 104 control participants during pregnancy and in 23 (44%) of 52 CGM participants and five (9%) of 57 control participants in the planning pregnancy trial. The most common serious adverse events were gastrointestinal (nausea and vomiting in four participants during pregnancy and three participants planning pregnancy). INTERPRETATION: Use of CGM during pregnancy in patients with type 1 diabetes is associated with improved neonatal outcomes, which are likely to be attributed to reduced exposure to maternal hyperglycaemia. CGM should be offered to all pregnant women with type 1 diabetes using intensive insulin therapy. This study is the first to indicate potential for improvements in non-glycaemic health outcomes from CGM use. FUNDING: Juvenile Diabetes Research Foundation, Canadian Clinical Trials Network, and National Institute for Health Research
    corecore