298 research outputs found

    Measuring The Evolutionary Rate Of Cooling Of ZZ Ceti

    Get PDF
    We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 +/- 1.4) x 10(-15) s s(-1) employing the O - C method and (5.45 +/- 0.79) x 10(-15) s s(-1) using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 +/- 1.0) x 10(-15) s s(-1). After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 +/- 1.1) x 10(-15) s s(-1). This value is consistent within uncertainties with the measurement of (4.19 +/- 0.73) x 10(-15) s s(-1) for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.NSF AST-1008734, AST-0909107Norman Hackerman Advanced Research Program 003658-0252-2009Astronom

    Measuring The Evolutionary Rate Of Cooling Of ZZ Ceti

    Get PDF
    We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 +/- 1.4) x 10(-15) s s(-1) employing the O - C method and (5.45 +/- 0.79) x 10(-15) s s(-1) using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 +/- 1.0) x 10(-15) s s(-1). After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 +/- 1.1) x 10(-15) s s(-1). This value is consistent within uncertainties with the measurement of (4.19 +/- 0.73) x 10(-15) s s(-1) for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.NSF AST-1008734, AST-0909107Norman Hackerman Advanced Research Program 003658-0252-2009Astronom

    MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    Full text link
    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics

    CcpA Affects Infectivity of \u3ci\u3eStaphylococcus aureus\u3c/i\u3e in a Hyperglycemic Environment

    Get PDF
    Many bacteria regulate the expression of virulence factors via carbon catabolite responsive elements. In Gram-positive bacteria, the predominant mediator of carbon catabolite repression is the catabolite control protein A (CcpA). Hyperglycemia is a widespread disorder that predisposes individuals to an array of symptoms and an increased risk of infections. In hyperglycemic individuals, the bacterium Staphylococcus aureus causes serious, life-threatening infections. The importance of CcpA in regulating carbon catabolite repression in S. aureus suggests it may be important for infections in hyperglycemic individuals. To test this suggestion, hyperglycemic non-obese diabetic (NOD; blood glucose level ≥20 mM) mice were challenged with the mouse pathogenic S. aureus strain Newman and the isogenic ccpA deletion mutant (MST14), and the effects on infectivity were determined. Diabetic NOD mice challenged with the ccpA deletion mutant enhanced the symptoms of infection in an acute murine pneumonia model relative to the parental strain. Interestingly, when diabetic NOD mice were used in footpad or catheter infection models, infectivity of the ccpA mutant decreased relative to the parental strain. These differences greatly diminished when normoglycemic NOD mice (blood glucose level ≤10 mM) were used. These data suggest that CcpA is important for infectivity of S. aureus in hyperglycemic individuals

    Treatment of non-small cell lung cancer with intensity-modulated radiation therapy in combination with cetuximab: the NEAR protocol (NCT00115518)

    Get PDF
    BACKGROUND: Even today, treatment of Stage III NSCLC still poses a serious challenge. So far, surgical resection is the treatment of choice. Patients whose tumour is not resectable or who are unfit to undergo surgery are usually referred to a combined radio-chemotherapy. However, combined radio-chemotherapeutic treatment is also associated with sometimes marked side effects but has been shown to be more efficient than radiation therapy alone. Nevertheless, there is a significant subset of patients whose overall condition does not permit administration of chemotherapy in a combined-modality treatment. It could be demonstrated though, that NSCLCs often exhibit over-expression of EGF-receptors hence providing an excellent target for the monoclonal EGFR-antagonist cetuximab (Erbitux(®)) which has already been shown to be effective in colorectal as well as head-and-neck tumours with comparatively mild side-effects. METHODS/DESIGN: The NEAR trial is a prospective phase II feasibility study combining a monoclonal EGF-receptor antibody with loco-regional irradiation in patients with stage III NSCLC. This trial aims at testing the combination's efficacy and rate of development of distant metastases with an accrual of 30 patients. Patients receive weekly infusions of cetuximab (Erbitux(®)) plus loco-regional radiation therapy as intensity-modulated radiation therapy. After conclusion of radiation treatment patients continue to receive weekly cetuximab for 13 more cycles. DISCUSSION: The primary objective of the NEAR trial is to evaluate toxicities and feasibility of the combined treatment with cetuximab (Erbitux(®)) and IMRT loco-regional irradiation. Secondary objectives are remission rates, 3-year-survival and local/systemic progression-free survival

    Combined vitamin D, omega-3 fatty acids, and a simple home exercise program may reduce cancer risk among active adults aged 70 and older : A randomized clinical trial

    Get PDF
    Objective: The aim of this study was to test the individual and combined benefit of vitamin D, omega-3, and a simple home strength exercise program on the risk of any invasive cancer. Design: The DO-HEALTH trial is a three-year, multicenter, 2 × 2 × 2 factorial design double-blind, randomized-controlled trial to test the individual and combined benefit of three public health interventions. Setting: The trial was conducted between December 2012 and December 2017 in five European countries. Participants: Generally healthy community-dwelling adults ≥70 years were recruited. Interventions: Supplemental 2000 IU/day of vitamin D3, and/or 1 g/day of marine omega-3s, and/or a simple home strength exercise (SHEP) programme compared to placebo and control exercise. Main outcome: In this pre-defined exploratory analysis, time-to-development of any verified invasive cancer was the primary outcome in an adjusted, intent-to-treat analysis. Results: In total, 2,157 participants (mean age 74.9 years; 61.7% women; 40.7% with 25-OH vitamin D below 20 /ml, 83% at least moderately physically active) were randomized. Over a median follow-up of 2.99 years, 81 invasive cancer cases were diagnosed and verified. For the three individual treatments, the adjusted hazard ratios (HRs, 95% CI, cases intervention versus control) were 0.76 (0.49–1.18; 36 vs. 45) for vitamin D3, 0.70 (0.44–1.09, 32 vs. 49) for omega-3s, and 0.74 (0.48–1.15, 35 vs. 46) for SHEP. For combinations of two treatments, adjusted HRs were 0.53 (0.28–1.00; 15 vs. 28 cases) for omega-3s plus vitamin D3; 0.56 (0.30–1.04; 11 vs. 21) for vitamin D3 plus SHEP; and 0.52 (0.28–0.97; 12 vs. 26 cases) for omega-3s plus SHEP. For all three treatments combined, the adjusted HR was 0.39 (0.18–0.85; 4 vs. 12 cases). Conclusion: Supplementation with daily high-dose vitamin D3 plus omega-3s, combined with SHEP, showed cumulative reduction in the cancer risk in generally healthy and active and largely vitamin D–replete adults ≥70 years. Clinical Trial Registration: ClinicalTrials.gov, Identifier: NCT01745263
    • …
    corecore