90 research outputs found

    Quiescent Thermal Emission from the Neutron Star in Aql X-1

    Get PDF
    We report on the quiescent spectrum measured with Chandra/ACIS-S of the transient, type-I X-ray bursting neutron star Aql X-1, immediately following an accretion outburst. The neutron star radius, assuming a pure hydrogen atmosphere and hard power-law spectrum, is RR_\infty=13.4{+5}{-4} (d/5 \kpc) km. Based on the historical outburst record of RXTE/ASM, the quiescent luminosity is consistent with that predicted by Brown, Bildsten and Rutledge from deep crustal heating, lending support to this theory for providing a minimum quiescent luminosity of transient neutron stars. While not required by the data, the hard power-law component can account for 18+/-8% of the 0.5-10 keV thermal flux. Short-timescale intensity variability during this observation is less than 15% rms (3 sigma; 0.0001-1 Hz, 0.2-8 keV). Comparison between the Chandra spectrum and three X-ray spectral observations made between Oct 1992 and Oct 1996 find all spectra consistent with a pure H atmosphere, but with temperatures ranging from 145--168 eV, spanning a factor of 1.87+/-0.21 in observed flux. The source of variability in the quiescent luminosity on long timescales (greater than years) remains a puzzle. If from accretion, then it remains to be explained why the quiescent accretion rate provides a luminosity so nearly equal to that from deep crustal heating.Comment: 15 pages, 1 figure, 2 tables; ApJ, accepte

    Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars

    Get PDF
    Nuclear reactions occurring deep in the crust of a transiently accreting neutron star efficiently maintain the core at a temperature >5e7 K. When accretion halts, the envelope relaxes to a thermal equilibrium set by the flux from the hot core, as if the neutron star were newly born. For the time-averaged accretion rates typical of low-mass X-ray transients, standard neutrino cooling is unimportant and the core thermally re-radiates the deposited heat. The resulting luminosity has the same magnitude as that observed from several transient neutron stars in quiescence. Confirmation of this mechanism would strongly constrain rapid neutrino cooling mechanisms for neutron stars. Thermal emission had previously been dismissed as a predominant source of quiescent emission since blackbody spectral fits implied an emitting area much smaller than a neutron star's surface. However, as with thermal emission from radio pulsars, fits with realistic emergent spectra will imply a substantially larger emitting area. Other emission mechanisms, such as accretion or a pulsar shock, can also operate in quiescence and generate intensity and spectral variations over short timescales. Indeed, quiescent accretion may produce gravitationally redshifted metal photoionization edges in the quiescent spectra (detectable with AXAF and XMM). We discuss past observations of Aql~X-1 and note that the low luminosity X-ray sources in globular clusters and the Be star/X-ray transients are excellent candidates for future study.Comment: 5 pages, 2 ps figures, uses AASTEX macros. To appear in ApJ letters, 10 September 1998. Revised to conform with journal; minor numerical correction

    Crustal Emission and the Quiescent Spectrum of the Neutron Star in KS 1731-260

    Get PDF
    (Abridged). The type-I X-ray bursting low mass X-ray binary KS 1731-260 was recently detected for the first time in quiescence by Wijnands et al., following an approximately 13 yr outburst which ended in Feb 2001. Unlike all other known transient neutron stars, the duration of this recent outburst is as long as the thermal diffusion time of the crust. The large amount of heat deposited by reactions in the crust will have heated the crust to temperatures much higher than the equilibrium core temperature. As a result, the thermal luminosity currently observed from the neutron star is dominated not by the core, but by the crust. Moreover, the level and the time evolution of quiescent luminosity is determined mostly by the amount of heat deposited in the crust during the most recent outburst. Using estimates of the outburst mass accretion rate, our calculations of the quiescent flux immediately following the end of the outburst agree with the observed quiescent flux to within a factor of a few. We present simulations of the evolution of the quiescent lightcurve for different scenarios of the crust microphysics, and demonstrate that monitoring observations (with currently flying instruments) spanning from 1--30 yr can measure the crust cooling timescale and the total amount of heat stored in the crust. These quantities have not been directly measured for any neutron star.Comment: Submitted to ApJ; 7 text pages, 3 figures, uses emulateapj.sty and apjfonts.st

    Reaction rates and transport in neutron stars

    Full text link
    Understanding signals from neutron stars requires knowledge about the transport inside the star. We review the transport properties and the underlying reaction rates of dense hadronic and quark matter in the crust and the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes, references updated, overview graphic added in the introduction, improvements in Sec IV.A.

    Variable Thermal Emission from Aql X-1 in Quiescence

    Get PDF
    We obtained four Chandra/ACIS-S observations beginning two weeks after the end of the November 2000 outburst of the neutron star (NS) transient Aql X-1. Over the five month span in quiescence, the X-ray spectra are consistent with thermal emission from a NS with a pure hydrogen photosphere and R_{\infty}=15.9+{0.8}-{2.9} (d/5 kpc) km at the optically implied X-ray column density. We also detect a hard power-law tail during two of the four observations. The intensity of Aql X-1 first decreased by 50+/-4% over three months, then increased by 35+/-5% in one month, and then remained constant (<6% change) over the last month. These variations in the first two observations cannot be explained by a change in the power-law spectral component, nor in the X-ray column density. Presuming that R_{\infty} is not variable and a pure hydrogen atmosphere, the long-term changes can only be explained by variations in the NS effective temperature, from kT_{eff, \infty}=130+3-5 eV, down to 113+3-4 eV, finally increasing to 118+9-4 eV for the final two observations. During one of these observations, we observe two phenomena which were previously suggested as indicators of quiescent accretion onto the NS: short-timescale (<1e4 sec) variability (at 32+8-6% rms), and a possible absorption feature near 0.5 keV. The possible absorption feature can potentially be explained as due to a time-variable response in the ACIS detector. Even so, such a feature has not been detected previously from a NS, and if confirmed and identified, can be exploited for simultaneous measurements of the photospheric redshift and NS radius.Comment: Accepted, ApJ. 9 Figure

    X-ray Spectral Identification of Three Candidate Quiescent Low-Mass X-ray Binaries in the Globular Cluster NGC 6304

    Full text link
    We report the search for low-mass X-ray binaries in quiescence (qLMXBs) in the globular cluster NGC 6304 using XMM observations. We present the spectral analysis leading to the identification of three candidate qLMXBs within the field of this globular cluster (GC), each consistent with the X-ray spectral properties of previously identified qLMXBs in the field and in other globular clusters -- specifically, with a hydrogen atmosphere neutron star with radius between 5--20\km. One (source 4, with R=11.7^{+8.3}_{-0.4} (D/5.97 kpc) km and kT_eff=117^{+59}_{-44} eV) is located within one core radius (r_c) of the centre of NGC 6304. This candidate also presents a spectral power-law component contributing 49 per cent of the 0.5-10 keV flux. A second one (source 9 with R=15.3^{+11.2}_{-6.5} (D/5.97 kpc) km and kT_eff=100^{+24}_{-19} eV) is found well outside the optical core (at 32 r_c) but still within the tidal radius. From spatial coincidence, we identify a bright 2MASS infrared counterpart which, at the distance of NGC 6304, seems to be a post-asymptotic giant branch star. The third qLMXB (source 5 with R=23^{+38}_{-14} (D/5.97 kpc) km and kT_eff=70^{+28}_{-20} eV) is a low signal-to-noise candidate for which we also identify from spatial coincidence a bright 2MASS infrared counterpart, with 99.916 per cent confidence. Three qLMXBs from this GC is marginally consistent with that expected from the encounter rate of NGC 6304. We also report a low signal-to-noise source with an unusually hard photon index (\alpha=-2.0^{+1.2}_{-2.2}). Finally, we present an updated catalogue of the X-ray sources lying in the field of NGC 6304, and compare this with the previous catalogue compiled from ROSAT observations.Comment: 28 pages, 9 figures, 6 tables. Accepted to MNRAS. In Pres

    Small, Dense Quark Stars from Perturbative QCD

    Get PDF
    As a model for nonideal behavior in the equation of state of QCD at high density, we consider cold quark matter in perturbation theory. To second order in the strong coupling constant, αs\alpha_s, the results depend sensitively on the choice of the renormalization mass scale. Certain choices of this scale correspond to a strongly first order chiral transition, and generate quark stars with maximum masses and radii approximately half that of ordinary neutron stars. At the center of these stars, quarks are essentially massless.Comment: ReVTeX, 5 pages, 3 figure

    The Quiescent X-Ray Spectrum of the Neutron Star in Cen X-4 Observed with Chandra/ACIS-S

    Get PDF
    We report on spectral and intensity variability analysis from a Chandra/ACIS-S observation of the transient, type-I X-ray bursting low-mass X-ray binary Cen X-4. The quiescent X-ray spectrum during this observation is statistically identical to one observed previously with Beppo/SAX, and close, but not identical, to one observed previously with ASCA. The X-ray spectrum is best described as a pure Hydrogen atmosphere thermal spectrum plus a power-law component that dominates the spectrum above 2 keV. The best-fit radius of the neutron star is r=12.9+/-2.6 (d/1.2 kpc) km if the interstellar absorption is fixed at the value implied by the optical reddening. Allowing the interstellar absorption to be a free parameter yields r=19+45-10 (d/1.2 kpc) km (90% confidence). The thermal spectrum from the neutron star surface is inconsistent with a solar metallicity. We find a 3sigma upper-limit of root-mean-square variability <18% (0.2-2.0 keV; 0.0001-1 Hz) during the observation. On the other hand, the 0.5-10.0 keV luminosity decreased by 40+/-8% in the 4.9 years between the Asca and Chandra observations. This variability can be attributed to the power-law component. Moreover, we limit the variation in thermal temperature to <10% over these 4.9 years. The stability of the thermal temperature and emission area radius supports the interpretation that the quiescent thermal emission is due to the hot neutron star core.Comment: 25 pages, 1 figure; ApJ, Accepted for April 10 2001 Issu
    corecore