194 research outputs found

    The Carbon Content of Intergalactic Gas at z=4.25 and its Evolution Toward z=2.4

    Get PDF
    This paper presents ionization-corrected measurements of the carbon abundance in intergalactic gas at 4.0 < z < 4.5, using spectra of three bright quasars obtained with the MIKE spectrograph on Magellan. By measuring the CIV strength in a sample of 131 discrete HI-selected quasar absorbers with \rho/\bar{\rho}>1.6, we derive a median carbon abundance of [C/H]=-3.55, with lognormal scatter of approximately ~0.8 dex. This median value is a factor of two to three lower than similar measurements made at z~2.4 using CIV and OVI. The strength of evolution is modestly dependent on the choice of UV background spectrum used to make ionization corrections, although our detection of an abundance evolution is generally robust with respect to this model uncertainty. We present a framework for analyzing the effects of spatial fluctuations in the UV ionizing background at frequencies relevant for CIV production. We also explore the effects of reduced flux between 3-4 Rydbergs (as from HeII Lyman series absorption) on our abundance estimates. At HeII line absorption levels similar to published estimates the effects are very small, although a larger optical depth could reduce the strength of the abundance evolution. Our results imply that ~50% of the heavy elements seen in the IGM at z~2.4 were deposited in the 1.3 Gyr between z~4.3 and z~2.4. The total implied mass flux of carbon into the Lyman alpha forest would constitute ~30% of the IMF-weighted carbon yield from known star forming populations over this period.Comment: Accepted for publication in the Astrophysical Journal. 23 pages, 24 figures, 2 table

    Black Holes on FIRE: Stellar Feedback Limits Early Feeding of Galactic Nuclei

    Get PDF
    We introduce massive black holes (BHs) in the Feedback In Realistic Environments project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass halos (Mhalo(z=2)1012.5MM_{\rm halo}(z=2) \approx 10^{12.5}\,\rm{M}_{\odot}) down to z=1z=1. These simulations model stellar feedback by supernovae, stellar winds, and radiation, and BH growth using a gravitational torque-based prescription tied to resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short (1\lesssim 1\,Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain under-massive relative to the local MBHM_{\rm BH}-MbulgeM_{\rm bulge} relation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty, and galaxies settle into a more ordered state, with BHs rapidly converging onto the scaling relation when the host reaches Mbulge1010MM_{\rm bulge} \sim 10^{10}\,\rm{M}_{\odot}. Our results are not sensitive to the details of the accretion model so long as BH growth is tied to the gas content within 100\sim 100\,pc of the BH. Our simulations imply that bursty stellar feedback has strong implications for BH and AGN demographics, especially in the early Universe and for low-mass galaxies.Comment: 5 pages, 3 figures, submitted to MNRA

    Testing the Recovery of Intrinsic Galaxy Sizes and Masses of z~2 Massive Galaxies Using Cosmological Simulations

    Get PDF
    Accurate measurements of galaxy masses and sizes are key to tracing galaxy evolution over time. Cosmological zoom-in simulations provide an ideal test bed for assessing the recovery of galaxy properties from observations. Here, we utilize galaxies with M10101011.5MM_*\sim10^{10}-10^{11.5}M_{\odot} at z~1.7-2 from the MassiveFIRE cosmological simulation suite, part of the Feedback in Realistic Environments (FIRE) project. Using mock multi-band images, we compare intrinsic galaxy masses and sizes to observational estimates. We find that observations accurately recover stellar masses, with a slight average underestimate of ~0.06 dex and a ~0.15 dex scatter. Recovered half-light radii agree well with intrinsic half-mass radii when averaged over all viewing angles, with a systematic offset of ~0.1 dex (with the half-light radii being larger) and a scatter of ~0.2 dex. When using color gradients to account for mass-to-light variations, recovered half-mass radii also exceed the intrinsic half-mass radii by ~0.1 dex. However, if not properly accounted for, aperture effects can bias size estimates by ~0.1 dex. No differences are found between the mass and size offsets for star-forming and quiescent galaxies. Variations in viewing angle are responsible for ~25% of the scatter in the recovered masses and sizes. Our results thus suggest that the intrinsic scatter in the mass-size relation may have previously been overestimated by ~25%. Moreover, orientation-driven scatter causes the number density of very massive galaxies to be overestimated by ~0.5 dex at M1011.5MM_*\sim10^{11.5}M_{\odot}.Comment: Published in the Astrophysical Journal Letters (7 pages, 5 figures; updated to match published version

    Measuring dynamical masses from gas kinematics in simulated high-redshift galaxies

    Get PDF
    Advances in instrumentation have recently extended detailed measurements of gas kinematics to large samples of high-redshift galaxies. Relative to most nearby, thin disc galaxies, in which gas rotation accurately traces the gravitational potential, the interstellar medium (ISM) of z ≳ 1 galaxies is typically more dynamic and exhibits elevated turbulence. If not properly modelled, these effects can strongly bias dynamical mass measurements. We use high-resolution FIRE-2 cosmological zoom-in simulations to analyse the physical effects that must be considered to correctly infer dynamical masses from gas kinematics. Our analysis covers a range of galaxy properties from low-redshift Milky-Way-mass galaxies to massive high-redshift galaxies (M⋆ > 10¹¹ M⊙ at z = 1). Selecting only snapshots where a disc is present, we calculate the rotational profile v_ϕ(r) of the cool (⁠10^(3.5) < T <10^(4.5) K⁠) gas and compare it to the circular velocity v_c = √GM_(enc)/r⁠. In the simulated galaxies, the gas rotation traces the circular velocity at intermediate radii, but the two quantities diverge significantly in the centre and in the outer disc. Our simulations appear to over-predict observed rotational velocities in the centres of massive galaxies (likely from a lack of black hole feedback), so we focus on larger radii. Gradients in the turbulent pressure at these radii can provide additional radial support and bias dynamical mass measurements low by up to 40 per cent. In both the interior and exterior, the gas’ motion can be significantly non-circular due to e.g. bars, satellites, and inflows/outflows. We discuss the accuracy of commonly used analytic models for pressure gradients (or ‘asymmetric drift’) in the ISM of high-redshift galaxies

    The HI covering fraction of Lyman Limit Systems in FIRE haloes

    Full text link
    Atomic hydrogen (HI) serves a crucial role in connecting galactic-scale properties such as star formation with the large-scale structure of the Universe. While recent numerical simulations have successfully matched the observed covering fraction of HI near Lyman Break Galaxies (LBGs) and in the foreground of luminous quasars at redshifts z3z \lesssim 3, the low-mass end remains as-of-yet unexplored in observational and computational surveys. We employ a cosmological, hydrodynamical simulation (FIREbox) supplemented with zoom-in simulations (MassiveFIRE) from the Feedback In Realistic Environments (FIRE) project to investigate the HI covering fraction of Lyman Limit Systems (NHI1017.2N_{\mathrm{HI}} \gtrsim 10^{17.2} cm2^{-2}) across a wide range of redshifts (z=06z=0-6) and halo masses (1081013M10^8-10^{13} M_{\odot} at z=0z=0, 1081011M10^8-10^{11} M_{\odot} at z=6z=6) in the absence of feedback from active galactic nuclei (AGN). We find that the covering fraction inside haloes exhibits a strong increase with redshift, with only a weak dependence on halo mass for higher-mass haloes. For massive haloes (Mvir10111012MM_{\mathrm{vir}} \sim 10^{11}-10^{12} M_{\odot}), the radial profiles showcase scale-invariance and remain independent of mass. The radial dependence is well-captured by a fitting function. The covering fractions in our simulations are in good agreement with measurements of the covering fraction in LBGs. Our comprehensive analysis unveils a complex dependence with redshift and halo mass for haloes with Mvir1010MM_{\mathrm{vir}} \lesssim 10^{10} M_{\odot} that future observations aim to constrain, providing key insights into the physics of structure formation and gas assembly

    On the deuterium abundance and the importance of stellar mass loss in the interstellar and intergalactic medium

    Get PDF
    We quantify the gas-phase abundance of deuterium and fractional contribution of stellar mass loss to the gas in cosmological zoom-in simulations from the Feedback In Realistic Environments project. At low metallicity, our simulations confirm that the deuterium abundance is very close to the primordial value. The chemical evolution of the deuterium abundance that we derive here agrees quantitatively with analytical chemical evolution models. We furthermore find that the relation between the deuterium and oxygen abundance exhibits very little scatter. We compare our simulations to existing high-redshift observations in order to determine a primordial deuterium fraction of 2.549 +/- 0.033 x 10^-5 and stress that future observations at higher metallicity can also be used to constrain this value. At fixed metallicity, the deuterium fraction decreases slightly with decreasing redshift, due to the increased importance of mass loss from intermediate-mass stars. We find that the evolution of the average deuterium fraction in a galaxy correlates with its star formation history. Our simulations are consistent with observations of the Milky Way's interstellar medium: the deuterium fraction at the solar circle is 85-92 per cent of the primordial deuterium fraction. We use our simulations to make predictions for future observations. In particular, the deuterium abundance is lower at smaller galactocentric radii and in higher mass galaxies, showing that stellar mass loss is more important for fuelling star formation in these regimes (and can even dominate). Gas accreting onto galaxies has a deuterium fraction above that of the galaxies' interstellar medium, but below the primordial fraction, because it is a mix of gas accreting from the intergalactic medium and gas previously ejected or stripped from galaxies.Comment: Accepted for publication in MNRAS. Revised version: expanded discussion and added Figure 2 (residual dependence on iron abundance

    On the dust temperatures of high redshift galaxies

    Get PDF
    Dust temperature is an important property of the interstellar medium (ISM) of galaxies. It is required when converting (sub)millimeter broadband flux to total infrared luminosity (L_IR), and hence star formation rate, in high-z galaxies. However, different definitions of dust temperatures have been used in the literature, leading to different physical interpretations of how ISM conditions change with, e.g., redshift and star formation rate. In this paper, we analyse the dust temperatures of massive (M* > 10^10 Msun) z=2-6 galaxies with the help of high-resolution cosmological simulations from the Feedback in Realistic Environments (FIRE) project. At z~2, our simulations successfully predict dust temperatures in good agreement with observations. We find that dust temperatures based on the peak emission wavelength increase with redshift, in line with the higher star formation activity at higher redshift, and are strongly correlated with the specific star formation rate. In contrast, the mass-weighted dust temperature does not strongly evolve with redshift over z=2-6 at fixed IR luminosity but is tightly correlated with L_IR at fixed z. The mass-weighted temperature is important for accurately estimating the total dust mass. We also analyse an 'equivalent' dust temperature for converting (sub)millimeter flux density to total IR luminosity, and provide a fitting formula as a function of redshift and dust-to-metal ratio. We find that galaxies of higher equivalent (or higher peak) dust temperature ('warmer dust') do not necessarily have higher mass-weighted temperatures. A 'two-phase' picture for interstellar dust can explain the different scaling relations of the various dust temperatures.Comment: 26 pages, 15 figures, accepted for publication in MNRA
    corecore