346 research outputs found

    A neural marker for social bias toward in-group accents

    Get PDF
    Accents provide information about the speaker's geographical, socio-economic, and ethnic background. Research in applied psychology and sociolinguistics suggests that we generally prefer our own accent to other varieties of our native language and attribute more positive traits to it. Despite the widespread influence of accents on social interactions, educational and work settings the neural underpinnings of this social bias toward our own accent and, what may drive this bias, are unexplored. We measured brain activity while participants from two different geographical backgrounds listened passively to 3 English accent types embedded in an adaptation design. Cerebral activity in several regions, including bilateral amygdalae, revealed a significant interaction between the participants' own accent and the accent they listened to: while repetition of own accents elicited an enhanced neural response, repetition of the other group's accent resulted in reduced responses classically associated with adaptation. Our findings suggest that increased social relevance of, or greater emotional sensitivity to in-group accents, may underlie the own-accent bias. Our results provide a neural marker for the bias associated with accents, and show, for the first time, that the neural response to speech is partly shaped by the geographical background of the listener

    Comparison between pulse wave velocities measured using Complior and measured using Biopac

    Get PDF
    Arterial stiffness is a reliable prognostic parameter for cardiovascular diseases. The effect of change in arterial stiffness can be measured by the change of the pulse wave velocity (PWV). The Complior system is widely used to measure PWV between the carotid and radial arteries by means of piezoelectric clips placed around the neck and the wrist. The Biopac system is an easier to use alternative that uses ECG and simple optical sensors to measure the PWV between the heart and the fingertips, and thus extends a bit more to the peripheral vasculature compared to the Complior system. The goal of this study was to test under various conditions to what extent these systems provide comparable and correlating values. 25 Healthy volunteers, 20–30 years old, were measured in four sequential position: sitting, lying, standing and sitting. The results showed that the Biopac system measured consistently and significantly lower PWV values than the Complior system, for all positions. Correlation values and Bland–Altman plots showed that despite the difference in PWV magnitudes obtained by the two systems the measurements did agree well. Which implies that as long as the differences in PWV magnitudes are taken into account, either system could be used to measure PWV changes over time. However, when basing diagnosis on absolute PWV values, one should be very much aware of how the PWV was measured and with what system

    Eskers on Mars: Morphometric comparisons to eskers on Earth and implications for sediment-discharge dynamics of subglacial drainage

    Get PDF
    Mars’ present climate is extremely cold and arid. Until recently, it was widely thought that debris-covered glaciers in Mars’ mid-latitudes have been pervasively cold-based since their formation 10s–100s Myr ago. However, we recently discovered eskers associated with ~110–150 Myr old glaciers in the Phlegra Montes [1] and NW Tempe Terra [2] regions of Mars’ northern mid-latitudes. Eskers are sinuous ridges comprising sediments deposited in glacial meltwater conduits. Therefore, eskers associated with existing mid-latitude glaciers on Mars indicate that localised wet-based glaciation did occur during Mars’ most recent geological period. Eskers are important tools for reconstructing the nature, extent, and dynamics of wet-based glaciation on Earth, and have similar potential for Mars. We used 1–2 m/pixel resolution digital elevation models derived from 25–50 cm/pixel High Resolution Imaging Science Experiment stereo-pair images to measure the planform and 3D morphometries of the Phlegra Montes and NW Tempe Terra eskers, and compare them with the morphometries of Quaternary-aged eskers in Canada [3] and SW Finland [4]. We found that the Martian eskers have remarkably similar lengths, sinuosities and heights to terrestrial eskers, but that the Martian eskers are typically wider and have lower side slopes. Large width-height ratios of the Martian eskers are consistent with our previous measurements of ancient (~3.5 Ga) eskers close to Mars’ south pole [5], and may arise from differences in either: esker degradation state, or fundamental glacio-hydrological controls on esker formation between Mars and Earth. Portions of the two Martian eskers with comparable crest morphologies (e.g., sharp- or round-crested) have similar width-height relationships, suggesting that glacio-hydrological processes may exert controls upon the observed relationships between esker morphology and morphometry. Our morphometric analyses also reveal that the Martian esker in NW Tempe Terra has a ‘stacked’ morphology: the crest of a wide, round-crested underlying ridge is superposed by a narrow, sharp- to multi-crested ridge. Based on morpho-sedimentary relationships observed along terrestrial eskers [6], we interpret this transition to represent waning sediment supply and meltwater discharge towards the end of the esker-forming drainage episode(s). Direct sedimentary insights into Martian eskers are not yet possible so we emphasise that such inferences should be rigorously grounded in observations of analogous landforms on Earth. This work was funded by STFC grant ST/N50421X/1. References: [1] Gallagher, C., and Balme, M.R., (2015), Earth. Planet. Sci. Lett. 431, 96-109, [2] Butcher, F.E.G., et al. (2017), J. Geophys. Res. Planets. 122(12), 2445-2468, [3] Storrar, R.D., et al. (2014) Quat. Sci. Rev. 105, 1-25, [4] Storrar, R.D., and Jones, A., Unpublished, [5] Butcher, F.E.G., et al. (2016), Icarus 275, 65-84, [6] Burke, M.J., et al. (2010) Geol. Soc. Am. Bull. 122, 1637-1645

    Comprehensive Solid-State Characterization of Rare Earth Flouride Nanoparticles

    Get PDF
    The combination of multinuclear solid-state NMR spectroscopy and powder X-ray diffraction has been applied to characterize the octahedron-shaped crystalline nanoparticle products resulting from an inverse micelle synthesis. Rietveld refinements of the powder X-ray diffraction data from the nanoparticles revealed their general formula to be (H3O)Y3F10·xH2O. 1H magic-angle spinning (MAS) NMR experiments provided information on sample purity and served as an excellent probe of the zeolithic incorporation of atmospheric water. 19F MAS NMR experiments on a series of monodisperse nanoparticle samples of various sizes yielded spectra featuring three unique 19F resonances arising from three different fluorine sites within the (H3O)Y3F10·xH2O crystal structure. Partial removal of zeolithic water from the internal cavities and tunnels of the nanoparticles led to changes in the integrated peak intensities in the 19F MAS NMR spectra; the origin of this behavior is discussed in terms of 19F longitudinal relaxation. 19F–89Y variable-amplitude cross-polarization (VACP) NMR experiments on both stationary samples and samples under MAS conditions indicated that two distinct yttrium environments are present, and on the basis of the relative peak intensities, the population of one of the two sites is closely linked to the nanoparticle size. Both 19F MAS and 19F–89Y VACP/MAS experiments indicated small amounts of an impurity present in certain nanoparticles; these are postulated to be spherical amorphous YF3 nanoparticles. We discuss the importance of probing molecular-level structure in addition to microscopic structure and how the combination of these characterization methods is crucial for understanding nanoparticle design, synthesis, and application

    Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related macular degeneration

    Get PDF
    PURPOSE: The growth of ocular neovascularization is regulated by a balance between stimulating and inhibiting growth factors. Somatostatin affects angiogenesis by inhibiting the growth hormone-insulin-like growth factor axis and also has a direct antiproliferative effect on human retinal endothelial cells. The purpose of our study is to investigate the expression of somatostatin receptor (sst) subtypes and particularly sst subtype 2A (sst2A) in normal human macula, and to study sst2A in different stages of age-related maculopathy (ARM), because of the potential anti-angiogenic effect of somatostatin analogues. METHODS: Sixteen eyes (10 enucleated eyes, 4 donor eyes, and 2 surgically removed choroidal neovascular [CNV] membranes) of 15 patients with eyes at different stages of ARM were used for immunohistochemistry. Formaldehyde-fixed paraffin-embedded slides were incubated with a polyclonal anti-human sst2A antibody. mRNA expression of five ssts and somatostatin was determined in the posterior pole of three normal human eyes by reverse transcriptase-polymerase chain reaction. RESULTS: The immunohistochemical expression of sstA in newly formed endothelial cells and fibroblast-like cells was strong in fibrovascular CNV membranes. mRNA of sst subtypes 1, 2A, and 3, as well as somatostatin, was present in the normal posterior pole; sst subtypes 4 and 5 were not detectable. CONCLUSIONS: Most early-formed CNV in ARM express sst2A. The presence of mRNA of sst subtype 2A was observed in normal human macula, and subtypes 1 and 3 and somatostatin are also present. sst2A receptors bind potential anti-angiogenic somatostatin analogues such as octreotide. Therefore, somatostatin analogues may be an effective therapy in early stages of CNV in ARM

    Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related macular degeneration

    Get PDF
    PURPOSE: The growth of ocular neovascularization is regulated by a balance between stimulating and inhibiting growth factors. Somatostatin affects angiogenesis by inhibiting the growth hormone-insulin-like growth factor axis and also has a direct antiproliferative effect on human retinal endothelial cells. The purpose of our study is to investigate the expression of somatostatin receptor (sst) subtypes and particularly sst subtype 2A (sst2A) in normal human macula, and to study sst2A in different stages of age-related maculopathy (ARM), because of the potential anti-angiogenic effect of somatostatin analogues. METHODS: Sixteen eyes (10 enucleated eyes, 4 donor eyes, and 2 surgically removed choroidal neovascular [CNV] membranes) of 15 patients with eyes at different stages of ARM were used for immunohistochemistry. Formaldehyde-fixed paraffin-embedded slides were incubated with a polyclonal anti-human sst2A antibody. mRNA expression of five ssts and somatostatin was determined in the posterior pole of three normal human eyes by reverse transcriptase-polymerase chain reaction. RESULTS: The immunohistochemical expression of sstA in newly formed endothelial cells and fibroblast-like cells was strong in fibrovascular CNV membranes. mRNA of sst subtypes 1, 2A, and 3, as well as somatostatin, was present in the normal posterior pole; sst subtypes 4 and 5 were not detectable. CONCLUSIONS: Most early-formed CNV in ARM express sst2A. The presence of mRNA of sst subtype 2A was observed in normal human macula, and subtypes 1 and 3 and somatostatin are also present. sst2A receptors bind potential anti-angiogenic somatostatin analogues such as octreotide. Therefore, somatostatin analogues may be an effective therapy in early stages of CNV in ARM

    Overcoming controllability problems in distributed testing from an input output transition system

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 Springer VerlagThis paper concerns the testing of a system with physically distributed interfaces, called ports, at which it interacts with its environment. We place a tester at each port and the tester at port p observes events at p only. This can lead to controllability problems, where the observations made by the tester at a port p are not sufficient for it to be able to know when to send an input. It is known that there are test objectives, such as executing a particular transition, that cannot be achieved if we restrict attention to test cases that have no controllability problems. This has led to interest in schemes where the testers at the individual ports send coordination messages to one another through an external communications network in order to overcome controllability problems. However, such approaches have largely been studied in the context of testing from a deterministic finite state machine. This paper investigates the use of coordination messages to overcome controllability problems when testing from an input output transition system and gives an algorithm for introducing sufficient messages. It also proves that the problem of minimising the number of coordination messages used is NP-hard
    corecore