35 research outputs found

    Concept Inventories as a Resource for Teaching Evolution

    Get PDF
    Understanding evolution is critical to learning biology, but few college instructors take advantage of the body of peer-reviewed literature that can inform evolution teaching and assessment. Here we summarize the peer-reviewed papers on tools to assess student learning of evolutionary concepts. These published concept inventories provide a resource for instructors to design courses, gauge student preparation, identify key misconceptions in their student population, and measure the impact of a lesson, course, or broader curriculum on student learning. Because these inventories vary in their format, target audience, and degree of validation, we outline and explain these features. In addition to summarizing the published concept inventories on topics within evolution, we lay out a flexible framework to help instructors decide when and how to use them

    Environment-Sensitive Epigenetics and the Heritability of Complex Diseases

    Get PDF
    Genome-wide association studies have thus far failed to explain the observed heritability of complex human diseases. This is referred to as the “missing heritability” problem. However, these analyses have usually neglected to consider a role for epigenetic variation, which has been associated with many human diseases. We extend models of epigenetic inheritance to investigate whether environment-sensitive epigenetic modifications of DNA might explain observed patterns of familial aggregation. We find that variation in epigenetic state and environmental state can result in highly heritable phenotypes through a combination of epigenetic and environmental inheritance. These two inheritance processes together can produce familial covariances significantly higher than those predicted by models of purely epigenetic inheritance and similar to those expected from genetic effects. The results suggest that epigenetic variation, inherited both directly and through shared environmental effects, may make a key contribution to the missing heritability

    Investigating variation in replicability

    Get PDF
    Although replication is a central tenet of science, direct replications are rare in psychology. This research tested variation in the replicability of 13 classic and contemporary effects across 36 independent samples totaling 6,344 participants. In the aggregate, 10 effects replicated consistently. One effect – imagined contact reducing prejudice – showed weak support for replicability. And two effects – flag priming influencing conservatism and currency priming influencing system justification – did not replicate. We compared whether the conditions such as lab versus online or US versus international sample predicted effect magnitudes. By and large they did not. The results of this small sample of effects suggest that replicability is more dependent on the effect itself than on the sample and setting used to investigate the effect

    Epigenetic inheritance, epimutation, and the response to selection.

    No full text
    There has been minimal theoretical exploration of the role of epigenetic variation in the response to natural selection. Using a population genetic model, I derive formulae that characterize the response of epigenetic variation to selection over multiple generations. Unlike genetic models in which mutation rates are assumed to be low relative to the strength of selection, the response to selection decays quickly due to a rapid lowering of parent-offspring epiallelic correlation. This effect is separate from the slowing response caused by a reduction in epigenetic variation. These results suggest that epigenetic variation may be less responsive to natural selection than is genetic variation, even in cases where levels of heritability appear similar

    Epialleles, epiallele frequencies, and their fitnesses.

    No full text
    <p>Epialleles, epiallele frequencies, and their fitnesses.</p
    corecore