91 research outputs found

    Performance of ECG-based seizure detection algorithms strongly depends on training and test conditions

    Get PDF
    Objective To identify non-EEG-based signals and algorithms for detection of motor and non-motor seizures in people lying in bed during video-EEG (VEEG) monitoring and to test whether these algorithms work in freely moving people during mobile EEG recordings. Methods Data of three groups of adult people with epilepsy (PwE) were analyzed. Group 1 underwent VEEG with additional devices (accelerometry, ECG, electrodermal activity); group 2 underwent VEEG; and group 3 underwent mobile EEG recordings both including one-lead ECG. All seizure types were analyzed. Feature extraction and machine-learning techniques were applied to develop seizure detection algorithms. Performance was expressed as sensitivity, precision, F1_{1} score, and false positives per 24 hours. Results The algorithms were developed in group 1 (35 PwE, 33 seizures) and achieved best results (F1_{1} score 56%, sensitivity 67%, precision 45%, false positives 0.7/24 hours) when ECG features alone were used, with no improvement by including accelerometry and electrodermal activity. In group 2 (97 PwE, 255 seizures), this ECG-based algorithm largely achieved the same performance (F1_{1} score 51%, sensitivity 39%, precision 73%, false positives 0.4/24 hours). In group 3 (30 PwE, 51 seizures), the same ECG-based algorithm failed to meet up with the performance in groups 1 and 2 (F1_{1} score 27%, sensitivity 31%, precision 23%, false positives 1.2/24 hours). ECG-based algorithms were also separately trained on data of groups 2 and 3 and tested on the data of the other groups, yielding maximal F1 scores between 8% and 26%. Significance Our results suggest that algorithms based on ECG features alone can provide clinically meaningful performance for automatic detection of all seizure types. Our study also underscores that the circumstances under which such algorithms were developed, and the selection of the training and test data sets need to be considered and limit the application of such systems to unseen patient groups behaving in different conditions

    Blood Pressure in Seizures and Epilepsy

    Get PDF
    In this narrative review, we summarize the current knowledge of neurally mediated blood pressure (BP) control and discuss how recently described epilepsy- and seizure-related BP alterations may contribute to premature mortality and sudden unexpected death in epilepsy (SUDEP). Although people with epilepsy display disturbed interictal autonomic function with a shift toward predominant sympathetic activity, prevalence of arterial hypertension is similar in people with and without epilepsy. BP is transiently increased in association with most types of epileptic seizures but may also decrease in some, illustrating that seizure activity can cause both a decrease and increase of BP, probably because of stimulation or inhibition of distinct central autonomic function by epileptic activity that propagates into different neuronal networks of the central autonomic nervous system. The principal regulatory neural loop for short-term BP control is termed baroreflex, mainly involving peripheral sensors and brain stem nuclei. The baroreflex sensitivity (BRS, expressed as change of interbeat interval per change in BP) is intact after focal seizures, whereas BRS is markedly impaired in the early postictal period following generalized convulsive seizures (GCS), possibly due to metabolically mediated muscular hyperemia in skeletal muscles, a massive release of catecholamines and compromised brain stem function. Whilst most SUDEP cases are probably caused by a cardiorespiratory failure during the early postictal period following GCS, a profoundly disturbed BRS may allow a life-threatening drop of systemic BP in the aftermath of GCS, as recently reported in a patient as a plausible cause of SUDEP in a few patients

    Main assumptions for energy pathways

    Full text link
    © The Author(s) 2019. The aim of this chapter is to make the scenario calculations fully transparent and comprehensible to the scientific community. It provides the scenario narratives for the reference case (5.0 °C) as well as for the 2.0 °C and 1.5 °C on a global and regional basis. Cost projections for all fossil fuels and renewable energy technologies until 2050 are provided. Explanations are given for all relevant base year data for the modelling and the main input parameters such as GDP, population, renewable energy potentials and technology parameters

    Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases

    Get PDF
    Age-associated neurodegenerative disorders such as Alzheimer’s disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuroprotective compound screening. Here we describe how C. elegans has been used to model various human ageing-associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in these worm models and so may have translational potential

    Investigating Bacterial Sources of Toxicity as an Environmental Contributor to Dopaminergic Neurodegeneration

    Get PDF
    Parkinson disease (PD) involves progressive neurodegeneration, including loss of dopamine (DA) neurons from the substantia nigra. Select genes associated with rare familial forms of PD function in cellular pathways, such as the ubiquitin-proteasome system (UPS), involved in protein degradation. The misfolding and accumulation of proteins, such as α-synuclein, into inclusions termed Lewy Bodies represents a clinical hallmark of PD. Given the predominance of sporadic PD among patient populations, environmental toxins may induce the disease, although their nature is largely unknown. Thus, an unmet challenge surrounds the discovery of causal or contributory neurotoxic factors that could account for the prevalence of sporadic PD. Bacteria within the order Actinomycetales are renowned for their robust production of secondary metabolites and might represent unidentified sources of environmental exposures. Among these, the aerobic genera, Streptomyces, produce natural proteasome inhibitors that block protein degradation and may potentially damage DA neurons. Here we demonstrate that a metabolite produced by a common soil bacterium, S. venezuelae, caused DA neurodegeneration in the nematode, Caenorhabditis elegans, which increased as animals aged. This metabolite, which disrupts UPS function, caused gradual degeneration of all neuronal classes examined, however DA neurons were particularly vulnerable to exposure. The presence of DA exacerbated toxicity because neurodegeneration was attenuated in mutant nematodes depleted for tyrosine hydroxylase (TH), the rate-limiting enzyme in DA production. Strikingly, this factor caused dose-dependent death of human SH-SY5Y neuroblastoma cells, a dopaminergic line. Efforts to purify the toxic activity revealed that it is a highly stable, lipophilic, and chemically unique small molecule. Evidence of a robust neurotoxic factor that selectively impacts neuronal survival in a progressive yet moderate manner is consistent with the etiology of age-associated neurodegenerative diseases. Collectively, these data suggest the potential for exposures to the metabolites of specific common soil bacteria to possibly represent a contributory environmental component to PD

    The high-resolution map of Oxia Planum, Mars; the landing site of the ExoMars Rosalind Franklin rover mission

    Get PDF
    This 1:30,000 scale geological map describes Oxia Planum, Mars, the landing site for the ExoMars Rosalind Franklin rover mission. The map represents our current understanding of bedrock units and their relationships prior to Rosalind Franklin’s exploration of this location. The map details 15 bedrock units organised into 6 groups and 7 textural and surficial units. The bedrock units were identified using visible and near-infrared remote sensing datasets. The objectives of this map are (i) to identify where the most astrobiologically relevant rocks are likely to be found, (ii) to show where hypotheses about their geological context (within Oxia Planum and in the wider geological history of Mars) can be tested, (iii) to inform both the long-term (hundreds of metres to ∌1 km) and the short-term (tens of metres) activity planning for rover exploration, and (iv) to allow the samples analysed by the rover to be interpreted within their regional geological context

    Laboratory markers of cardiac and metabolic complications after generalized tonic-clonic seizures

    No full text
    Abstract Background Generalized tonic-clonic seizures (GTCS) frequently lead to emergency inpatient referrals. Laboratory blood values are routinely performed on admission to detect underlying causes and metabolic or cardiac complications. Our goal was to assess the nature and frequency of complications occurring in association with GTCS. Methods We retrospectively extracted data from emergency protocols and discharge letters of adult patients admitted to the Department of Epileptology between 01/2010 and 06/2015. Inclusion criteria were diagnosis of GTCS and admission via emergency services. Exclusion criteria were status epilepticus prior to admission to hospital and non-generalized seizures. Results A total of 223 patients (of 986 screened cases) were included. Overall, 1.8% required intubation while 1.3% had less severe respiratory problems. In 5.6% of patients, a transient hypoxemia was measured. Hypertensive urgencies affected 7.8% of the patients, sinus tachycardia occurred in 41.2%. Troponin I (cTNI) was determined in 75 patients and was increased in 12% of these cases. Occurrence of elevated cTNI levels was significantly correlated with patient’s age. Four patients were diagnosed with NSTEMI and one patient with STEMI. Creatine kinase (CK) was increased in 59.4% of the patients, with 10-fold increases in 4.3%. Rhabdomyolysis with an >50 fold increase in CK was detected in 1.9% of patients. Prolonged disturbances of consciousness affected 5% of cases while agitation, delirium, and psychotic episodes occurred in 6.3%. Minor traumatic injuries affected 45.7% of patients. Conclusions Troponin elevations in association with GTCS are one of the more common complications after emergency admissions especially in older patients. In our selected patient population, serious complications such as intracranial hemorrhage, myocardial infarction and acute renal failure occurred in <1% of GTCS only
    • 

    corecore