46 research outputs found

    Ariel - Volume 6 Number 3

    Get PDF
    Editors Mark Dembert J.D. Kanofsky Frank Chervenak John Lammie Curt Cummings Staff Ken Jaffe Bob Sklaroff Halley Faust Jim Burke Nancy Redfern Hans Weltin Photographer Larry Glazerman Overseas Editor Mike Sinason Humorist Jim McCan

    Decade-Scale Trend in Sea Water Salinity Revealed Through δ18O Analysis of Montastraea annularis Annual Growth Bands

    Get PDF
    Stable oxygen isotope ratios (δ18O) of coral skeletons are influenced by ambient water temperature and by the oxygen isotope ratio in the surrounding sea water, which, in turn, is linked to evaporation (salinity) and precipitation. To investigate this relationship more thoroughly, we collected hourly temperature data from the Hen and Chickens Reef in the Florida Keys between 1975 and 1988 and compared them to the δ18O of Montastraea annularis skeleton that grew during the same interval. To ensure that we obtained the correct oxygen isotopic range in the skeleton we typically sampled the coral at a resolution of 20–30 samples in 1 year; in 1 year we sampled the coral at a resolution of 70 samples·year−1. Despite our high-resolution sampling, we were unable to obtain the full temperature-induced δ18O range in the skeleton. Our data suggest that, during the summer, evaporation causes isotopic enrichment in the water, partially masking the temperature-induced signal. Our data also show that oxygen isotopic composition of seawater at the reef has increased since 1981. This increase indicates that salinity has increased slightly during the past decade, perhaps as a result of increased evaporation in waters of Florida Bay and the Keys. This phenomenon is probably not caused by a decrease in the outflow of freshwater into Florida Bay from the Everglades but may be related to the measured deficit in precipitation that has occurred over the past decade

    Late Quaternary uplift along the North America-Caribbean plate boundary: Evidence from the sea level record of Guantanamo Bay, Cuba

    Get PDF
    The tectonic setting of the North America-Caribbean plate boundary has been studied intensively, but some aspects are still poorly understood, particularly along the Oriente fault zone. Guantanamo Bay, southern Cuba, is considered to be on a coastline that is under a transpressive tectonic regime along this zone, and is hypothesized to have a low uplift rate. We tested this by studying emergent reef terrace deposits around the bay. Reef elevations in the protected, inner part of the bay are ~11e12 m and outercoast, wave-cut benches are as high as ~14 m. Uranium-series analyses of corals yield ages ranging from ~133 ka to ~119 ka, correlating this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Assuming a span of possible paleo-sea levels at the time of the last interglacial period yields long-term tectonic uplift rates of 0.02e0.11 m/ka, supporting the hypothesis that the tectonic uplift rate is low. Nevertheless, on the eastern and southern coasts of Cuba, east and west of Guantanamo Bay, there are flights of multiple marine terraces, at higher elevations, that could record a higher rate of uplift, implying that Guantanamo Bay may be anomalous. Southern Cuba is considered to have experienced a measurable but modest effect from glacial isostatic adjustment (GIA) processes. Thus, with a low uplift rate, Guantanamo Bay should show no evidence of emergent marine terraces dating to the ~100 ka (MIS 5.3) or ~80 ka (MIS 5.1) sea stands and results of the present study support this

    Late Quaternary uplift along the North America-Caribbean plate boundary: Evidence from the sea level record of Guantanamo Bay, Cuba

    Get PDF
    The tectonic setting of the North America-Caribbean plate boundary has been studied intensively, but some aspects are still poorly understood, particularly along the Oriente fault zone. Guantanamo Bay, southern Cuba, is considered to be on a coastline that is under a transpressive tectonic regime along this zone, and is hypothesized to have a low uplift rate. We tested this by studying emergent reef terrace deposits around the bay. Reef elevations in the protected, inner part of the bay are ~11e12 m and outercoast, wave-cut benches are as high as ~14 m. Uranium-series analyses of corals yield ages ranging from ~133 ka to ~119 ka, correlating this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Assuming a span of possible paleo-sea levels at the time of the last interglacial period yields long-term tectonic uplift rates of 0.02e0.11 m/ka, supporting the hypothesis that the tectonic uplift rate is low. Nevertheless, on the eastern and southern coasts of Cuba, east and west of Guantanamo Bay, there are flights of multiple marine terraces, at higher elevations, that could record a higher rate of uplift, implying that Guantanamo Bay may be anomalous. Southern Cuba is considered to have experienced a measurable but modest effect from glacial isostatic adjustment (GIA) processes. Thus, with a low uplift rate, Guantanamo Bay should show no evidence of emergent marine terraces dating to the ~100 ka (MIS 5.3) or ~80 ka (MIS 5.1) sea stands and results of the present study support this

    Ariel - Volume 7 Number 1

    Get PDF
    Editors Mark Dembert Frank Chervanek John Lammie Jim Burke Nancy Redfern Business Alf Levy Photographer Larry Glazerman Staff Hal Faust Curt Cummings Bob Levin tOO mUCH (University Medical College Hospital - London

    Effects of 2010 Hurricane Earl amidst geologic evidence for greater overwash at Anegada, British Virgin Islands

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Advances in Geosciences 38 (2014): 21-30, doi:10.5194/adgeo-38-21-2014.A post-hurricane survey of a Caribbean island affords comparisons with geologic evidence for greater overwash at the same place. This comparison, though of limited application to other places, helps calibrate coastal geology for assessment of earthquake and tsunami potential along the Antilles Subduction Zone. The surveyed island, Anegada, is 120 km south of the Puerto Rico Trench and is near the paths of hurricanes Donna (1960) and Earl (2010), which were at or near category 4 when at closest approach. The survey focused on Earl's geologic effects, related them to the surge from Hurricane Donna, and compared them further with erosional and depositional signs of southward overwash from the Atlantic Ocean that dates to 1200–1450 AD and to 1650–1800 AD. The main finding is that the geologic effects of these earlier events dwarf those of the recent hurricanes. Hurricane Earl's geologic effects at Anegada, observed mainly in 2011, were limited to wrack deposition along many of the island's shores and salt ponds, accretion of small washover (spillover) fans on the south shore, and the suspension and deposition of microbial material from interior salt ponds. Earl's most widespread deposit at Anegada, the microbial detritus, was abundantly juxtaposed with evidence for catastrophic overwash in prior centuries. The microbial detritus formed an extensive coating up to 2 cm thick that extended into breaches in beach-ridge plains of the island's north shore, onto playas that are underlain by a sand-and-shell sheet that extends as much as 1.5 km southward from the north shore, and among southward-strewn limestone boulders pendant to outcrops as much as 1 km inland. Earl's spillover fans also contrast with a sand-and-shell sheet, which was dated previously to 1650–1800, by being limited to the island's south shore and by extending inland a few tens of meters at most. These findings complement those reported in this issue by Michaela Spiske and Robert Halley (Spiske and Halley, 2014), who studied a coral-rubble ridge that lines part of Anegada's north shore. Spiske and Halley attribute the ridge to storms that were larger than Earl. But they contrast the ridge with coral boulders that were scattered hundreds of meters inland by overwash in 1200–1450

    Low reservoir ages for the surface ocean from mid-Holocene Florida corals

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA2209, doi:10.1029/2007PA001527.The 14C reservoir age of the surface ocean was determined for two Holocene periods (4908–4955 and 3008–3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ± 33 and 291 ± 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ± 60 years) from corals. It appears that the surface ocean was closer to isotopic equilibrium with CO2 in the atmosphere during these two time periods than it was during recent times. Seasonal δ 18O measurements from the younger coral are similar to modern values, suggesting that mixing with open ocean waters was indeed occurring during this coral's lifetime. Likely explanations for the lower reservoir age include increased stratification of the surface ocean or increased Δ14C values of subsurface waters that mix into the surface. Our results imply that a more correct reservoir age correction for radiocarbon measurements of marine samples in this location from the time periods ∼3040 and ∼4930 cal years B.P. is ∼292 ± 30 years, less than the canonical value of 404 ± 20 years.NSF Chemical Oceanography program provided monetary support under grants OCE-9711326, OCE-0137207, and OCE-0551940 (to ERMD)

    Histone H3 globular domain acetylation identifies a new class of enhancers

    Get PDF
    Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes. These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3). H3K27ac is also widely used to identify active enhancers, and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered

    Reproducibility of Geochemical and Climatic Signals in the Atlantic Coral \u3cem\u3eMontastraea Faveolata\u3c/em\u3e

    Get PDF
    Monthly resolved, 41‐year‐long stable isotopic and elemental ratio time series were generated from two separate heads of Montastraea faveolata from Looe Key, Florida, to assess the fidelity of using geochemical variations in Montastraea, the dominant reef‐building coral of the Atlantic, to reconstruct sea surface environmental conditions at this site. The stable isotope time series of the two corals replicate well; mean values of δ18O and δ13C are indistinguishable between cores (compare 0.70‰ versus 0.68‰ for δ13C and −3.90‰ versus −3.94‰ for δ18O). Mean values from the Sr/Ca time series differ by 0.037 mmol/mol, which is outside of analytical error and indicates that nonenvironmental factors are influencing the coral Sr/Ca records at Looe Key. We have generated significant δ18O–sea surface temperature (SST) (R = −0.84) and Sr/Ca‐SST (R = −0.86) calibration equations at Looe Key; however, these equations are different from previously published equations for Montastraea. Variations in growth parameters or kinetic effects are not sufficient to explain either the observed differences in the mean offset between Sr/Ca time series or the disagreement between previous calibrations and our calculated δ18O‐SST and Sr/Ca‐SST relationships. Calibration differences are most likely due to variations in seawater chemistry in the continentally influenced waters at Looe Key. Additional geochemical replication studies of Montastraea are needed and should include multiple coral heads from open ocean localities complemented whenever possible by seawater chemistry determinations
    corecore