325 research outputs found

    Stability of Satellite Planes in M31 II: Effects of the Dark Subhalo Population

    Full text link
    The planar arrangement of nearly half the satellite galaxies of M31 has been a source of mystery and speculation since it was discovered. With a growing number of other host galaxies showing these satellite galaxy planes, their stability and longevity have become central to the debate on whether the presence of satellite planes are a natural consequence of prevailing cosmological models, or represent a challenge. Given the dependence of their stability on host halo shape, we look into how a galaxy plane's dark matter environment influences its longevity. An increased number of dark matter subhalos results in increased interactions that hasten the deterioration of an already-formed plane of satellite galaxies in spherical dark halos. The role of total dark matter mass fraction held in subhalos in dispersing a plane of galaxies present non trivial effects on plane longevity as well. But any misalignments of plane inclines to major axes of flattened dark matter halos lead to their lifetimes being reduced to < 3 Gyrs. Distributing > 40% of total dark mass in subhalos in the overall dark matter distribution results in a plane of satellite galaxies that is prone to change through the 5 Gyr integration time period.Comment: 11 pages, 9 figures, accepted to MNRAS September 22 201

    Asymmetric Azidation under Hydrogen Bonding Phase-Transfer Catalysis: A Combined Experimental and Computational Study

    Get PDF
    [Image: see text] Asymmetric catalytic azidation has increased in importance to access enantioenriched nitrogen containing molecules, but methods that employ inexpensive sodium azide remain scarce. This encouraged us to undertake a detailed study on the application of hydrogen bonding phase-transfer catalysis (HB-PTC) to enantioselective azidation with sodium azide. So far, this phase-transfer manifold has been applied exclusively to insoluble metal alkali fluorides for carbon–fluorine bond formation. Herein, we disclose the asymmetric ring opening of meso aziridinium electrophiles derived from β-chloroamines with sodium azide in the presence of a chiral bisurea catalyst. The structure of novel hydrogen bonded azide complexes was analyzed computationally, in the solid state by X-ray diffraction, and in solution phase by (1)H and (14)N/(15)N NMR spectroscopy. With N-isopropylated BINAM-derived bisurea, end-on binding of azide in a tripodal fashion to all three NH bonds is energetically favorable, an arrangement reminiscent of the corresponding dynamically more rigid trifurcated hydrogen-bonded fluoride complex. Computational analysis informs that the most stable transition state leading to the major enantiomer displays attack from the hydrogen-bonded end of the azide anion. All three H-bonds are retained in the transition state; however, as seen in asymmetric HB-PTC fluorination, the H-bond between the nucleophile and the monodentate urea lengthens most noticeably along the reaction coordinate. Kinetic studies corroborate with the turnover rate limiting event resulting in a chiral ion pair containing an aziridinium cation and a catalyst-bound azide anion, along with catalyst inhibition incurred by accumulation of NaCl. This study demonstrates that HB-PTC can serve as an activation mode for inorganic salts other than metal alkali fluorides for applications in asymmetric synthesis

    Cognitive flexibility and performance in children and adolescents with threshold and sub-threshold bipolar disorder

    Get PDF
    Greater understanding of cognitive function in children and adolescents with bipolar disorder (BD) is of critical importance to improve our ability to design targeted treatments to help with real-world impairment, including academic performance. We sought to evaluate cognitive performance among children with either BD type I, II, or “not otherwise specified” (NOS) participating in multi-site Course and Outcome of Bipolar Youth study compared to typically developing controls (TDC) without psycho-pathology. In particular, we sought to test the hypothesis that BD-I and BD-II youths with full threshold episodes of mania or hypomania would have cognitive deficits, including in reversal learning, vs. those BD-NOS participants with sub-threshold episodes and TDCs. N = 175 participants (BD-I = 81, BD-II = 11, BD-NOS = 28, TDC = 55) completed Cambridge Neuropsychological Automated Testing Battery (CANTAB) tasks. A priori analyses of the simple reversal stage of the CANTAB intra-/extra-dimensional shift task showed that aggregated BD-I/II participants required significantly more trials to complete the task than either BD-NOS participants with sub-syndromal manic/hypomanic symptoms or than TDCs. BD participants across sub-types had impairments in sustained attention and information processing for emotionally valenced words. Our results align with prior findings showing that BD-I/II youths with distinct episodes have specific alterations in reversal learning. More broadly, our study suggests that further work is necessary to see the interaction between neurocognitive performance and longitudinal illness course. Additional work is required to identify the neural underpinnings of these differences as targets for potential novel treatments, such as cognitive remediation

    Alterations in functional connectivity for language in prematurely born adolescents

    Get PDF
    Recent data suggest recovery of language systems but persistent structural abnormalities in the prematurely born. We tested the hypothesis that subjects who were born prematurely develop alternative networks for processing language. Subjects who were born prematurely (n = 22; 600–1250 g birth weight), without neonatal brain injury on neonatal cranial ultrasound, and 26 term control subjects were examined with a functional magnetic resonance imaging (fMRI) semantic association task, the Wechsler Intelligence Scale for Children-III (WISC-III) and the Clinical Evaluation of Language Fundamentals (CELF). In-magnet task accuracy and response times were calculated, and fMRI data were evaluated for the effect of group on blood oxygen level dependent (BOLD) activation, the correlation between task accuracy and activation and the functional connectivity between regions activating to task. Although there were differences in verbal IQ and CELF scores between the preterm (PT) and term control groups, there were no significant differences for either accuracy or response time for the in-magnet task. Both groups activated classic semantic processing areas including the left superior and middle temporal gyri and inferior frontal gyrus, and there was no significant difference in activation patterns between groups. Clear differences between the groups were observed in the correlation between task accuracy and activation to task at P < 0.01, corrected for multiple comparisons. Left inferior frontal gyrus correlated with accuracy only for term controls and left sensory motor areas correlated with accuracy only for PT subjects. Left middle temporal gyri correlated with task accuracy for both groups. Connectivity analyses at P < 0.001 revealed the importance of a circuit between left middle temporal gyri and inferior frontal gyrus for both groups. In addition, the PT subjects evidenced greater connectivity between traditional language areas and sensory motor areas but significantly fewer correlated areas within the frontal lobes when compared to term controls. We conclude that at 12 years of age, children born prematurely and children born at term had no difference in performance on a simple lexical semantic processing task and activated similar areas. Connectivity analyses, however, suggested that PT subjects rely upon different neural pathways for lexical semantic processing when compared to term controls. Plasticity in network connections may provide the substrate for improving language skills in the prematurely born

    Reading related white matter structures in adolescents are influenced more by dysregulation of emotion than behavior

    Get PDF
    Mood disorders and behavioral are broad psychiatric diagnostic categories that have different symptoms and neurobiological mechanisms, but share some neurocognitive similarities, one of which is an elevated risk for reading deficit. Our aim was to determine the influence of mood versus behavioral dysregulation on reading ability and neural correlates supporting these skills in youth, using diffusion tensor imaging in 11- to 17-year-old children and youths with mood disorders or behavioral disorders and age-matched healthy controls. The three groups differed only in phonological processing and passage comprehension. Youth with mood disorders scored higher on the phonological test but had lower comprehension scores than children with behavioral disorders and controls; control participants scored the highest. Correlations between fractional anisotropy and phonological processing in the left Arcuate Fasciculus showed a significant difference between groups and were strongest in behavioral disorders, intermediate in mood disorders, and lowest in controls. Correlations between these measures in the left Inferior Longitudinal Fasciculus were significantly greater than in controls for mood but not for behavioral disorders. Youth with mood disorders share a deficit in the executive-limbic pathway (Arcuate Fasciculus) with behavioral-disordered youth, suggesting reduced capacity for engaging frontal regions for phonological processing or passage comprehension tasks and increased reliance on the ventral tract (e.g., the Inferior Longitudinal Fasciculus). The low passage comprehension scores in mood disorder may result from engaging the left hemisphere. Neural pathways for reading differ mainly in executive-limbic circuitry. This new insight may aid clinicians in providing appropriate intervention for each disorder

    Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    Get PDF
    High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points

    Statistical mechanics of two-dimensional vortices and stellar systems

    Full text link
    The formation of large-scale vortices is an intriguing phenomenon in two-dimensional turbulence. Such organization is observed in large-scale oceanic or atmospheric flows, and can be reproduced in laboratory experiments and numerical simulations. A general explanation of this organization was first proposed by Onsager (1949) by considering the statistical mechanics for a set of point vortices in two-dimensional hydrodynamics. Similarly, the structure and the organization of stellar systems (globular clusters, elliptical galaxies,...) in astrophysics can be understood by developing a statistical mechanics for a system of particles in gravitational interaction as initiated by Chandrasekhar (1942). These statistical mechanics turn out to be relatively similar and present the same difficulties due to the unshielded long-range nature of the interaction. This analogy concerns not only the equilibrium states, i.e. the formation of large-scale structures, but also the relaxation towards equilibrium and the statistics of fluctuations. We will discuss these analogies in detail and also point out the specificities of each system.Comment: Chapter of the forthcoming "Lecture Notes in Physics" volume: ``Dynamics and Thermodynamics of Systems with Long Range Interactions'', T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    © 2019, The Author(s). Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO emissions from current VCE losses are estimated at 2.1-3.1 Tg CO-e yr, increasing annual CO emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions
    corecore