4,401 research outputs found

    Two-dimensional block processors - structures and implementations

    Get PDF
    Includes bibliographical references.Two-dimensional (2-D) block processing technique for linear filtering of digital images is introduced. New 2-D block structures are derived for 2-D recursive digital filters realized by difference equations and state-space formulations. Several special cases have also been considered and the relevant 2-D block structures are given. The computational costs of different implementation techniques employing high-speed convolution algorithms such as fast Fourier transform, number theoretic transform and polynomial transform have been studied. A comparison among the relative efficiencies of these implementation schemes is made and a suitable method is then proposed using short convolution algorithm which results in a minimized computational time

    Two-dimensional block transforms and their properties

    Get PDF
    Includes bibliographical references.For two-dimensional (2-D) digital filters implemented by a block recursive equation, explicit relations between their frequency characteristics and those of scalar filter are obtained. Specifically, these include the relation between the discrete-time Fourier transform (DTFT) of the block recursive equation and that of the scalar 2-D difference equation, and the relation between the block matrix transfer function of the block processor and the scalar transfer function. These relations that are independent of the type of realization of the block processor have been obtained using the eigenvalue properties of a special type of circulant matrix introduced in this correspondence

    When Process Affects Punishment: Differences in Sentences After Guilty Plea, Bench Trial, and Jury Trial in Five Guidelines States

    Get PDF
    The research reported in this Essay examines process discounts-differences in sentences imposed for the same offense, depending upon whether the conviction was by jury trial, bench trial, or guilty plea-in five states that use judicial sentencing guidelines. Few guidelines systems expressly recognize plea agreement as an acceptable basis for departure, and none authorizes judges to vary sentences based upon whether or not the defendant waived his right to a jury trial and opted for a bench trial. Nevertheless, we predicted that because of the cost savings resulting from waivers, judges and prosecutors in any sentencing system would ensure that guilty plea convictions would generate the lowest sentences, with bench trial sentences averaging higher than plea-based sentences for the same offense, and sentences following jury trials averagingt he highest of all, even after controllingf or otherf actors associated with sentence severity. We found that a significant plea discount is evident for most offenses in all five states. Waiving a jury in favor of a bench trial has less consistent punishment consequences. Among states and even within a single state, the prevalence of process discounts is extraordinarily varied, as are the causes and methods of discounting. The Essay explores how these findings might inform sentencing reform and discusses the use of bench trials in sentencing guidelines systems generally

    Rapid Circumstellar Disk Evolution and an Accelerating Star Formation Rate in the Infrared Dark Cloud M17 SWex

    Get PDF
    We present a catalog of 840 X-ray sources and first results from a 100 ks Chandra X-ray Observatory imaging study of the filamentary infrared dark cloud G014.225−-00.506, which forms the central regions of a larger cloud complex known as the M17 southwest extension (M17 SWex). In addition to the rich population of protostars and young stellar objects with dusty circumstellar disks revealed by Spitzer Space Telescope archival data, we discover a population of X-ray-emitting, intermediate-mass pre--main-sequence stars (IMPS) that lack infrared excess emission from circumstellar disks. We model the infrared spectral energy distributions of this source population to measure its mass function and place new constraints on the inner dust disk destruction timescales for 2-8 M⊙M_{\odot} stars. We also place a lower limit on the star formation rate (SFR) and find that it is quite high (M˙≥0.007 M⊙\dot{M}\ge 0.007~M_{\odot} yr−1^{-1}), equivalent to several Orion Nebula Clusters in G14.225−-0.506 alone, and likely accelerating. The cloud complex has not produced a population of massive, O-type stars commensurate with its SFR. This absence of very massive (≥20 M⊙{\ge}20~M_{\odot}) stars suggests that either (1) M17 SWex is an example of a distributed mode of star formation that will produce a large OB association dominated by intermediate-mass stars but relatively few massive clusters, or (2) the massive cores are still in the process of accreting sufficient mass to form massive clusters hosting O stars.Comment: 29 pages, 9 figures, accepted to Ap

    Lightweight Bulldozer Attachment for Construction and Excavation on the Lunar Surface

    Get PDF
    A lightweight bulldozer blade prototype has been designed and built to be used as an excavation implement in conjunction with the NASA Chariot lunar mobility platform prototype. The combined system was then used in a variety of field tests in order to characterize structural loads, excavation performance and learn about the operational behavior of lunar excavation in geotechnical lunar simulants. The purpose of this effort was to evaluate the feasibility of lunar excavation for site preparation at a planned NASA lunar outpost. Once the feasibility has been determined then the technology will become available as a candidate element in the NASA Lunar Surface Systems Architecture. In addition to NASA experimental testing of the LANCE blade, NASA engineers completed analytical work on the expected draft forces using classical soil mechanics methods. The Colorado School of Mines (CSM) team utilized finite element analysis (FEA) to study the interaction between the cutting edge of the LANCE blade and the surface of soil. FEA was also used to examine various load cases and their effect on the lightweight structure of the LANCE blade. Overall it has been determined that a lunar bulldozer blade is a viable technology for lunar outpost site preparation, but further work is required to characterize the behavior in 1/6th G and actual lunar regolith in a vacuum lunar environment

    Lattice effects observed in chaotic dynamics of experimental populations

    Get PDF
    Animals and many plants are counted in discrete units. The collection of possible values (state space) of population numbers is thus a nonnegative integer lattice. Despite this fact, many mathematical population models assume a continuum of system states. The complex dynamics, such as chaos, often displayed by such continuous-state models have stimulated much ecological research; yet discretestate models with bounded population size can display only cyclic behavior. Motivated by data from a population experiment, we compared the predictions of discrete-state and continuous-state population models. Neither the discrete- nor continuous-state models completely account for the data. Rather, the observed dynamics are explained by a stochastic blending of the chaotic dynamics predicted by the continuous-state model and the cyclic dynamics predicted by the discretestate models. We suggest that such lattice effects could be an important component of natural population fluctuations. The discovery that simple deterministic population models can display complex aperiodi

    An Efficient and Versatile Means for Assembling and Manufacturing Systems in Space

    Get PDF
    Within NASA Space Science, Exploration and the Office of Chief Technologist, there are Grand Challenges and advanced future exploration, science and commercial mission applications that could benefit significantly from large-span and large-area structural systems. Of particular and persistent interest to the Space Science community is the desire for large (in the 10- 50 meter range for main aperture diameter) space telescopes that would revolutionize space astronomy. Achieving these systems will likely require on-orbit assembly, but previous approaches for assembling large-scale telescope truss structures and systems in space have been perceived as very costly because they require high precision and custom components. These components rely on a large number of mechanical connections and supporting infrastructure that are unique to each application. In this paper, a new assembly paradigm that mitigates these concerns is proposed and described. A new assembly approach, developed to implement the paradigm, is developed incorporating: Intelligent Precision Jigging Robots, Electron-Beam welding, robotic handling/manipulation, operations assembly sequence and path planning, and low precision weldable structural elements. Key advantages of the new assembly paradigm, as well as concept descriptions and ongoing research and technology development efforts for each of the major elements are summarized
    • …
    corecore