
112 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND  SIGNAL PROCESSING, VOL. ASSP-35. NO. I ,  JANUARY 1987 

Correspondence 

Two-Dimensional Block Transforms  and Their 
Properties 

MAHMOOD R. AZIMI-SADJADI AND ROBERT A .  KING 

Abstract-For two-dimensional (2-D) digital filters implemented by 
a block recursive equation, explicit relations between their frequency 
characteristics and those of scalar filter are obtained. Specifically, these 
include the relation between the discrete-time Fourier transform 
(DTFT) of the block recursive equation  and that of the  scalar 2-D 
difference  equation, and the  relation between the block matrix transfer 
function of the block processor and the  scalar transfer function. These 
relations that  are independent of the type of realization of the block 
processor have been obtained using the eigenvalue properties of a spe- 
cial type of circulant  matrix  introduced  in  this correspondence. 

I. INTRODUCTION 
The idea  of processing  sequences in blocks  arose in connection 

with  the  desire  to  accomplish  recursive filtering operations  using 
fast transform  techniques [l]. Later, it  was  found  that the  block 
processing also  exhibits  several  other prominent  benefits  such  as 
reduced quantization effects and increased data  throughput  rate 
when implemented  using  array  processors.  Mitra and Gnanase- 
karan [2] have  developed  several new structures and obtained  the 
relation  between  the  pole  locations of the  one-dimensional (1-D) 
implemented filter  and those of the  original  transfer  function.  More 
recently, Barnes and  Shinnaka [3] have  developed a block  state- 
space structure from a  single-input  single-output  (SISO)  state-space 
structure  and  derived  explicit  relations  between  the z-transform and 
the matrix transfer  function of their  multiinput  and multioutput 
(MIMO)  structure  and those of the  SISO  model. 

Two-dimensional  (2-D)  block  processing  has attracted consid- 
erable  attention  over  the  past  few  years.  Several  authors  have  de- 
veloped  different 2-D block structures  for filters described by dif- 
ference  equation [4]-[6], convolution  summation  [4]-[6],  and  state- 
space  formulations  [4].  Mertzios  and  Venetsanopoulos  [7]  have  de- 
rived the matrix transfer  function of the  general  2-D block recur- 
sive  structure  and used  it  in conjunction with polynomial matrix 
decomposition  to  arrive at  a  parallel decomposed realization with- 
out delay-free  loops. 

In this  correspondence, new explicit  relationships  between  the 
frequency characteristics of the  2-D  block  implemented  system and 
those of the  original  scalar system are  derived. Specifically,  these 
include  the relation between  the  DTFT of the  block recursive equa- 
tion and  that of the  2-D difference equation;  and  the relation  be- 
tween the  block matrix transfer  function  and  the original transfer 
function.  For a 2-D block implemented  nonrecursive  digital filter, 
these  relations reduce  to  the  DFT  operations.  The  proposed method 
exploits  the  eigenvalue  properties of a special  type of block cir- 
culant matrix introduced  here  and  their  correspondence with the 
DFT of  a  finite sequence defined on  the primitive  roots of a  number 
other  than  unity. 
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11. TWO-DIMENSIONAL  DTFT OF BLOCKED SEQUENCES 
Consider a causal  quarter-plane  2-D recursive digital filter that 

is implemented by the  following  block  equation [4]: 

c00K.j + c10K-1.j + c01~i.J-1 + c11Yi-1.j-1 

= D,xi,j + Dloxi-l.i + Dolxi.j-,  + D l l x i - l , j - l .  (1) 

In this equation X l , j  is the  (i,j)th  input block  of size K X L (greater 
than the  order of the filter),  arranged as a column  vector,  i.e., 

x. . = [$g$g+ . . . J' 

2;) = [xrn,jLxrn,jL+l . . .  ~ ~ , ~ L + L - I I  (2) 

1.J 

where 

and similarly  for Yi,j .  {xi,j} and { Y ~ , ~ }  represent  the  scalar input and 
output  sequences,  respectively;  matrices Cij's and D,'s are  either 
lower  or  upper  triangular  block  Toeplitz, in  which the  constituent 
blocks  are also,either lower  or  upper  triangular  Toeplitz  matrices, 
whose elements  are  the coefficients q j ' s  and bj,j's of the  scalar  2- 
D  difference equation  [4]. 

The  DTFT of the input  block sequence {Xi , , )  and  the  output 
block sequence {Yi , j }  are,  respectively, defined by x((wI, w2)  and 
F('(wl, w2) where 

m m  

x(wl, w2) ~ ~ , ~ ~ - j ( ~ l i + w z j ) . '  (3) 

Using the definition of Xi , j  in  (2), (3) can  alternatively  be written 

i = o  j = o  

as 

% I ,  4 = [Xo.o(w1, 4 . . . X 0 , L -  I(WI. w2) xl ,o(wl> 4 
. . . X l , L - I ( ~ l >  4 . . . x K - l , L - l ( ~ l >  %)Ii (4) 

where X r , s ( w l ,  w2);  r E [0, K - I] and s E [0 ,  L - 11 is defined as 
m m  

xr,s(wI,  O2) = ,x XiK+r,jL+.se 
- j ( w l i + w ? j )  (5)  i = o  J = o  

The  DTFT of the  output block sequence  can similarly be defined. 
Equation (5) represents the  DTFT of the sampled  version sequence 
sampled at  the  block  rate.  Equation  (3)  shows that the  DTFT of the 
input block sequence {X i , j }  is the  DTFT of a vector sequence  whose 
elements  are  the  sampled version  of the  original input sequence 
taken at  sampling  intervals K and L. The  DTFT of the original 
sequence X ( w , ,  w2)  can  be recovered from  the  DTFT of the blocked 
sequence,  i.e., 

K- I  L - I  

x(w,, w2) = C C x,,,(W,K, w 2 ~ )  e-j(wlr+wzs).  (6) 

Now taking  the  DTFT of both sides of (1) and using the shifty 
property yields 

r=O s = O  

(c, + CIoe-Jw1 + COle-jUZ + Cl,e-Jwie- jw2 ) % 4 >  w2) 

= ( D ~ ~  + Dloe-Jwi + D ~ ~ ~ - J ~ ~  + ~ ~ ~ e - j ~ ~ e - j ~ ~ )  Z((wl, w2) 

(7) 
or  alternatively, 

4 w 1 ,  W * )  F h ,  W d  = w , . ,  4 R W l ,  0 2 ) '  (8) 
Now since Coo, CoL, Cl0, and CI1 are  block  Toeplitz  matrices, it 
can be shown that C(wl ,  w2) takes a special  form of  block circulant 
matrix in which the  upper  diagonal block elements  are multiplied 
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by Q ,  = e-Jw1.  This  type of block  circulant will therefore  be re- 
ferred to  as  an { Q1 } -block  circulant. In addition,  each  elemental 
block of f?(wI,  w2) will also  take a form of {Q2}-circulant,  where 

of matrices. 
Theorem 1 : An { Q }  -circulant  is a circulant  matrix in which  the 

upper  diagonal  elements  are  multiplied by Q .  The  permutation ma- 
trix of order K,  associated  with  this  matrix, is defined by 

A 

Q , n - e - '  '@'. The  following  theorems  are  developed  for  these  types 

(9) 

p j .  j 
K X K  

This  permutation  matrix  can  be  diagonalized  as 

n(Q) uKP(Q) uil (10) 

where 

II(Q) = Diag [a u w K .  - B W E - ' ] ,  B fJi'K 

and 

and  the  columns  of UK are  the  eigenvectors of P(Q) corresponding 
to  the  relevant  eigenvalues, awk, therefore,  we  have 

UK = W K A K  (11) 

where 

AK = Diag [1 c7 U2 . . ' U K - I ]  

and WK is a DFT  matrix of size K X K. 

permutation  matrix  as 
Theorem 2: The {Q}-circulant C(Q) can  be represented by its 

c(Q) = COZK f clP(Q) + C 2 P 2 ( Q )  + . . f c K - l P ( K - l )  (Q) 

= R[P(Q)l (12) 
where R1.1 is  a scalar  polynomial  called a  "representer" of the 
circulant.  Matrix C(Q) can  be  diagonalized  as 

Rm(Q)] u~c(Q) u,' 
= Diag [R(u) R(awK) . . R(uwi - ' ) ] .  (13) 

In  other  words, if X i ;  i = 0 ,  1 ,  - . , K - 1 ,  are  the  eigenvalues 
of P(Q) then  the  eigenvalues pi of C(Q)  are 

K -  1 K -  1 

pi = R(XJ = c cmX? = c cm(aw;)m. (14) 
m=O m=O 

Theorem 3: Consider matrix f?(Ql, Qz) which is  an  {Q,}-block 
circulant of order KL, in  which  each  constituent  block is also  an 
{Q2}-circulant  of  order L .  This  matrix  which  is referred to  as { Q , ,  
Q,} -block circulant  can  be  diagonalized  as 

N Q l ,  Q2> = u K , L  c(Ql, Qz) ui,; (1 5)  
where 

and 

Matrices nr(Ql) and A,(Q2) are defined by 

and 

I E [ O , L -  l ] = H  ( K ' L  W I  + 2 ~ h  ~2 + 2 ~ 1  

(24) 
where H(wl, w,) is the  original  scalar  transfer  function.  The  block 
matrix transfer  function is an { wI, w2}  -block  circulant  and  is  given 
by 

R(w1, 4 = Q i , m w l ,  4 U K , L .  (25) 
This  shows  that  the  eigenvalues  of  the  block  matrix  transfer  func- 
tion are  the  scalar  original  transfer  function  evaluated  at w1 = (wl 
+ 27rh)lK and wz = (wz + 2rE)/L.  Thus,  the  block  matrix  transfer 
function  can  be  decomposed into a parallel  bank  of filters with  each 
having the  original  scalar  LTI  transfer  function  followed by a sam- 
pling  rate  compressor [9] (at the  block  rate)  and a modulator  to 
provide  the  frequency  shift of (2nh/K, 2 d L )  for  the (h ,  1)th  ele- 
ments  of the  blocks.  The  elements of vector ~ K , L X ( ( W I ,  w,) are  given 
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(26) 
Now using  the definition  of Xr,s(ul, 02) in (5) and  applying  the 
index mapping o f p  = iK + r ,  q = j L  + s to  (26),  we  obtain 

(27) 
A similar  equation  can  be  obtained  for  the  elements of uK,Ly(ol,  
02) vector.  Equation (27) represents  the  DTFT of the  original  input 
sequence which  is first decimated  and  then  modulated. To recover 
the original scalar  output  sequence,  the  process  consists  of inter- 
polating [9 ]  all  the  channel  signals  back  to  their  high  sampling  rate 
and  demodulating  them  back  to  their  original  spectral  locations.  It 
can  be  shown  that  for  nonrecursive  digital filters (also  recursive 
digital filters  with impulse  response which dies  out fairly fast so 
that  the effect of  aliasing  is  negligible),  the  above  DTFT  relation- 
ships will become  DFT  relations,  and  hence,  the  operations  can 
efficiently be  carried  out  using 2-D decomposed  DFT.  Note  that 
the input and  output will be  considered  td  be  periodic  with  period 
P and Q (P, Q are  the  dimensions of the  input  array),  and  thus,  the 
blocks will have a periodicity of PIK and QlL. In this case,  the 
multiplication by matrices AK and AL would essentially  have  the 
same effect as  multiplying  the  inner  transforms by the relevant 
twiddle  factors. 

111. CONCLUSION 
In  this  correspondence,  expressions  are derived which relate the 

DTFT  of a general  2-D  recursive  block  structure  to  those of the 
scalar difference equation. A new type  of  circulant matrix  is  intro- 
duced  which  possesses  certain eigenvalue properties  which are used 
to  obtain  the relations between  the  DTFT of the  block  implemented 
filter and  those  of  the  scalar  implemented filter. The  original  scalar 
sequences  can  be  recovered  from  the  DTFT of the  blocked  se- 
quences  using a proper  transformation.  Moreover, it  is shown  that 
the  block matrix transfer  function  can  be  implemented by a bank 
of parallel scalar  original  transfer  functions,  sampling  rate  com- 
pressors,  and  appropriate  modulators.  For  2-D  nonrecursive filters 
and  also  stable  2-D  recursive filters with  fast  decaying  impulse re- 
sponses,  the  operations  can efficiently be  accomplished  using  FFT 
algorithms. 
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On Using  Cooccurrence  Matrices to Detect 
Periodicities 

A N ~ B A L  R. FIGUEIRAS-VIDAL, JOSE M. PAEZ-BORRALLO. 
AND RAMON GARCIA-GOMEZ 

Abstract-Drawbacks and limitations in applying the x’ indepen- 
dence hypothesis test parameter over the  elements  of cooccurrence ma- 
trices are discussed. The proper kind of measures to be applied, essen- 
tially of degree of concentration on the main diagonal, is justified. Some 
simple parameters that can be used in  this direction are introduced, 
and their performances illustrated using simulations. The possibility 
of designing “ad hoc” tests is also suggested. 

I.  INTRODUCTION 
The  sample  amplitude  cooccurrence matrix series  is  one of the 

representations of  a segment of  a discrete,  quantized  signal that 
preserves  information  about  it.  These  matrices have  as elements 

q i ( S H ,  k)  = #{(ml ,  m2))n  - M + 1 5 m,,  m2 

5 n; m2 - ml = k; S,(m,) = i ,  Sn(m2) = j )  (1) 

0 1 i , j ~ Q - l  

where S,(m) is  the ( n )  segment of the  quantized  register S(m), i.e., 
SJm)  equals S(m) if n - M - 1 I m 5 n ,  and 0 otherwise  (we 
assume 0, 1 ,  . . , Q - 1 as  quantizing  levels without losing  gen- 
erality),  and “ # ”  indicates  the  number of elements of the pairs 
(mi,  m2) defined  in (1) .  It  is  also  possible  to  introduce a  normalized 
cooccurrence matrix series  having  the  same  elements normalized 

These definitions correspond  to  joint  histograms of sample  value 
pairs;  therefore,  we  preserve significant information  about  the  sig- 
nal  when using  the  series q i j ( S n ,  k ) ,  1 k I I M. In [ 11, classical 
representations  for a segment of signal,  such  as energy  and auto- 
correlation,  are  derived  from  these  matrices  (quantization effects 
are  excluded). 

It is  clear,  therefore,  that  this matrix series provides  detailed 
information  about  the  structure of the  signal; in particular, (quasi-) 
periodicity can  be measured using  these  matrices.  Terzopoulos  in- 
troduces  in [ 11 a parameter  for  each  matrix, based on  the x2 good- 
ness-of-fit test  applied  to  measure  sample  dependence,  and esti- 
mates the pitch period of voice  speech  segments  locating  the 
maxima  of the  sequence  constituted by these x2 parameters. 

Terzopoulos  remarks in [ l ,  p. 101 that  the  unconditional  use of 
the x2 parameter in detecting  periodicities is  a  too-simplistic cri- 
terion,, and  he  mentions  one of the  cases in  which  this fails:  an  odd- 

by N = Ci Cj *q(S,,, k ) .  

Manuscript  received March 3, 1986; revised June 24, 1986. 
A. R.  Figueiras-Vidal and R.  Garcia-Gomez  are with the Department 

of Signal  Theory and Processing, ETSI  de Telecommunicacibn,  Polytech- 
nic  Universidad de Madrid,  Ciudad  Universitaria,  28040  Madrid,  Spain. 

J. M. Paez-Borrallo is with the Department of Signal Theory and Pro- 
cessing,  ETSI de Telecommunicacih, Polytechnic Universidad, Ciudad 
Universitaria,  28040  Madrid,  Spain,  and  Electr6nica  ENSA, San Rafael, 
6/Pol. Ind. Alcobendas,  Madrid,  Spain. 

IEEE  Log  Number  861 1154. 

0096-351818710100-0114$01.00 0 1987 IEEE 


