96 research outputs found

    Fossil Corals With Various Degrees of Preservation Can Retain Information About Biomineralization-Related Organic Material

    Get PDF
    Scleractinian corals typically form a robust calcium carbonate skeleton beneath their living tissue. This skeleton, through its trace element composition and isotope ratios, may record environmental conditions of water surrounding the coral animal. While bulk unrecrystallized aragonite coral skeletons can be used to reconstruct past ocean conditions, corals that have undergone significant diagenesis have altered geochemical signatures and are typically assumed to retain insufficient meaningful information for bulk or macrostructural analysis. However, partially recrystallized skeletons may retain organic molecular components of the skeletal organic matrix (SOM), which is secreted by the animal and directs aspects of the biomineralization process. Some SOM proteins can be retained in fossil corals and can potentially provide past oceanographic, ecological, and indirect genetic information. Here, we describe a dataset of scleractinian coral skeletons, aged from modern to Cretaceous plus a Carboniferous rugosan, characterized for their crystallography, trace element composition, and amino acid compositions. We show that some specimens that are partially recrystallized to calcite yield potentially useful biochemical information whereas complete recrystalization or silicification leads to significant alteration or loss of the SOM fraction. Our analysis is informative to biochemical-paleoceanographers as it suggests that previously discounted partially recrystallized coral skeletons may indeed still be useful at the microstructural level

    Possible Effects of Volcanic Eruptions on the Modern Atmosphere of Venus

    Get PDF
    This work reviews possible signatures and potential detectability of present-day volcanically emitted material in the atmosphere of Venus. We first discuss the expected composition of volcanic gases at present time, addressing how this is related to mantle composition and atmospheric pressure. Sulfur dioxide, often used as a marker of volcanic activity in Earth’s atmosphere, has been observed since late 1970s to exhibit variability at the Venus’ cloud tops at time scales from hours to decades; however, this variability may be associated with solely atmospheric processes. Water vapor is identified as a particularly valuable tracer for volcanic plumes because it can be mapped from orbit at three different tropospheric altitude ranges, and because of its apparent low background variability. We note that volcanic gas plumes could be either enhanced or depleted in water vapor compared to the background atmosphere, depending on magmatic volatile composition. Non-gaseous components of volcanic plumes, such as ash grains and/or cloud aerosol particles, are another investigation target of orbital and in situ measurements. We discuss expectations of in situ and remote measurements of volcanic plumes in the atmosphere with particular focus on the upcoming DAVINCI, EnVision and VERITAS missions, as well as possible future missions

    Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Guillermic, M., Cameron, L. P., De Corte, I., Misra, S., Bijma, J., de Beer, D., Reymond, C. E., Westphal, H., Ries, J. B., & Eagle, R. A. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. Science Advances, 7(2), (2021): eaba9958, https://doi.org/10.1126/sciadv.aba9958.The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.R.A.E. and J.B.R. acknowledge support from National Science Foundation grants OCE-1437166 and OCE-1437371. The work was also supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19), cofunded by a grant from the French government under the program “Investissements d’Avenir,” and an IAGC student grant 2017. R.A.E. acknowledges financial and logistical support from the Pritzker Endowment to UCLA IoES, and J.B.R. acknowledges support from the ZMT and the Hanse-Wissenschaftskolleg Fellowship Program and the NSF OCE award #1437371

    Detecting Venus’ volcanic gas plumes with VenSpec-H

    Get PDF
    International audienceThe VenSpec-H instrument is part of the EnVision payload which is currently being evaluated by ESA for mission selection. EnVision is a medium class mission to determine the nature and current state of geological activity on Venus, and its relationship with the atmosphere, to understand how Venus and Earth could have evolved so differently. VenSpec-H is part of the VenSpec suite [1], including also an IR mapper and a UV spectrometer [2] suite. The science objectives of this suite are to search for temporal variations in surface temperatures and tropospheric concentrations of volcanically emitted gases, indicative of volcanic eruptions; and study surface-atmosphere interactions and weathering by mapping surface emissivity and tropospheric gas abundances. Recent and perhaps ongoing volcanic activity has been inferred in data from both Venus Express an

    Physicochemical Control of Caribbean Coral Calcification Linked to Host and Symbiont Responses to Varying pCO2 and Temperature

    Get PDF
    It is thought that the active physiological regulation of the chemistry of a parent fluid is an important process in the biomineralization of scleractinian corals. Biological regulation of calcification fluid pH (pHCF) and other carbonate chemistry parameters ([CO32−]CF, DICCF, and ΩCF) may be challenged by CO2 driven acidification and temperature. Here, we examine the combined influence of changing temperature and CO2 on calcifying fluid regulation in four common Caribbean coral species—Porites astreoides, Pseudodiploria strigosa, Undaria tenuifolia, and Siderastrea siderea. We utilize skeletal boron geochemistry (B/Ca and ÎŽ11B) to probe the pHCF, [CO32−]CF, and DICCF regulation in these corals, and ÎŽ13C to track changes in the sources of carbon for calcification. Temperature was found to not influence pHCF regulation across all pCO2 treatments in these corals, in contrast to recent studies on Indo-Pacific pocilloporid corals. We find that [DIC]CF is significantly lower at higher temperatures in all the corals, and that the higher temperature was associated with depletion of host energy reserves, suggesting [DIC]CF reductions may result from reduced input of respired CO2 to the DIC pool for calcification. In addition, ÎŽ13C data suggest that under high temperature and CO2 conditions, algal symbiont photosynthesis continues to influence the calcification pool and is associated with low [DIC]CF in P. strigosa and P. astreoides. In P. astreoides this effect is also associated with an increase in chlorophyll a concentration in coral tissues at higher temperatures. These observations collectively support the assertion that physicochemical control over coral calcifying fluid chemistry is coupled to host and symbiont physiological responses to environmental change, and reveals interspecific differences in the extent and nature of this coupling

    Ethical, legal and social aspects of human cerebral organoids and their governance in Germany, the United Kingdom and the United States

    Get PDF
    Human cerebral organoids (HCOs) are model systems that enable researchers to investigate the human brain in ways that had previously been impossible. The emergence of HCOs was accompanied by both expert and layperson discussions concerning the possibility of these novel entities developing sentience or consciousness. Such concerns are reflected in deliberations about how to handle and regulate their use. This perspective article resulted from an international and interdisciplinary research retreat “Ethical, Legal and Social Aspects of Human Cerebral Organoids and their Governance in Germany, the United Kingdom and the United States”, which took place in TĂŒbingen, Germany, in August 2022. The retreat focused on whether HCO research requires new ethical and regulatory approaches. It addressed epistemic issues around the detection and theorisation of consciousness, ethical concerns around moral status and research conduct, difficulties for legislation and guidelines managing these entities, and public engagement

    Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study

    Full text link
    Background Weight loss trajectories after bariatric surgery vary widely between individuals, and predicting weight loss before the operation remains challenging. We aimed to develop a model using machine learning to provide individual preoperative prediction of 5-year weight loss trajectories after surgery. Methods In this multinational retrospective observational study we enrolled adult participants (aged ≄\ge18 years) from ten prospective cohorts (including ABOS [NCT01129297], BAREVAL [NCT02310178], the Swedish Obese Subjects study, and a large cohort from the Dutch Obesity Clinic [Nederlandse Obesitas Kliniek]) and two randomised trials (SleevePass [NCT00793143] and SM-BOSS [NCT00356213]) in Europe, the Americas, and Asia, with a 5 year followup after Roux-en-Y gastric bypass, sleeve gastrectomy, or gastric band. Patients with a previous history of bariatric surgery or large delays between scheduled and actual visits were excluded. The training cohort comprised patients from two centres in France (ABOS and BAREVAL). The primary outcome was BMI at 5 years. A model was developed using least absolute shrinkage and selection operator to select variables and the classification and regression trees algorithm to build interpretable regression trees. The performances of the model were assessed through the median absolute deviation (MAD) and root mean squared error (RMSE) of BMI. Findings10 231 patients from 12 centres in ten countries were included in the analysis, corresponding to 30 602 patient-years. Among participants in all 12 cohorts, 7701 (75∙\bullet3%) were female, 2530 (24∙\bullet7%) were male. Among 434 baseline attributes available in the training cohort, seven variables were selected: height, weight, intervention type, age, diabetes status, diabetes duration, and smoking status. At 5 years, across external testing cohorts the overall mean MAD BMI was 2∙\bullet8 kg/m2{}^2 (95% CI 2∙\bullet6-3∙\bullet0) and mean RMSE BMI was 4∙\bullet7 kg/m2{}^2 (4∙\bullet4-5∙\bullet0), and the mean difference between predicted and observed BMI was-0∙\bullet3 kg/m2{}^2 (SD 4∙\bullet7). This model is incorporated in an easy to use and interpretable web-based prediction tool to help inform clinical decision before surgery. InterpretationWe developed a machine learning-based model, which is internationally validated, for predicting individual 5-year weight loss trajectories after three common bariatric interventions.Comment: The Lancet Digital Health, 202

    Impacts of Warming and Acidification on Coral Calcification Linked to Photosymbiont Loss and Deregulation of Calcifying Fluid pH

    Get PDF
    Corals are globally important calcifiers that exhibit complex responses to anthropogenic warming and acidification. Although coral calcification is supported by high seawater pH, photosynthesis by the algal symbionts of zooxanthellate corals can be promoted by elevated pCO2. To investigate the mechanisms underlying corals’ complex responses to global change, three species of tropical zooxanthellate corals (Stylophora pistillata, Pocillopora damicornis, and Seriatopora hystrix) and one species of asymbiotic cold-water coral (Desmophyllum pertusum, syn. Lophelia pertusa) were cultured under a range of ocean acidification and warming scenarios. Under control temperatures, all tropical species exhibited increased calcification rates in response to increasing pCO2. However, the tropical species’ response to increasing pCO2 flattened when they lost symbionts (i.e., bleached) under the high-temperature treatments—suggesting that the loss of symbionts neutralized the benefit of increased pCO2 on calcification rate. Notably, the cold-water species that lacks symbionts exhibited a negative calcification response to increasing pCO2, although this negative response was partially ameliorated under elevated temperature. All four species elevated their calcifying fluid pH relative to seawater pH under all pCO2 treatments, and the magnitude of this offset (Δ[H+]) increased with increasing pCO2. Furthermore, calcifying fluid pH decreased along with symbiont abundance under thermal stress for the one species in which calcifying fluid pH was measured under both temperature treatments. This observation suggests a mechanistic link between photosymbiont loss (‘bleaching’) and impairment of zooxanthellate corals’ ability to elevate calcifying fluid pH in support of calcification under heat stress. This study supports the assertion that thermally induced loss of photosymbionts impairs tropical zooxanthellate corals’ ability to cope with CO2-induced ocean acidification

    Pathobiology of highly pathogenic H5 avian influenza viruses in naturally infected Galliformes and Anseriformes in France during winter 2015-2016

    Get PDF
    In late 2015, an epizootic of Highly Pathogenic Avian Influenza (H5Nx) was registered in Southwestern France, including more than 70 outbreaks in commercial poultry flocks. Phylogenetic analyses suggested local emergence of H5 viruses which differed from A/goose/Guangdong/1/1996 clade 2.3.4.4b lineage and shared a unique polybasic cleavage site in their hemagglutinin protein. The present work provides an overview of the pathobiological picture associated with this epizootic in naturally infected chickens, guinea fowls and ducks. Upon necropsy examination, selected tissues were sampled for histopathology, immunohistochemistry and quantitative Real Time Polymerase Chain Reaction. In Galliformes, HPAIVs infection manifested as severe acute systemic vasculitis and parenchymal necrosis and was associated with endothelial expression of viral antigen. In ducks, lesions were mild and infrequent, with sparse antigenic detection in respiratory and digestive mucosae and leukocytes. Tissue quantifications of viral antigen and RNA were higher in chickens and guinea fowls compared to duck. Subsequently, recombinant HA (rHA) was generated from a H5 HPAIV isolated from an infected duck to investigate its glycan-binding affinity for avian mucosae. Glycan-binding analysis revealed strong affinity of rHA for 3'Sialyl-LacNAc and low affinity for Sialyl-LewisX, consistent with a duck-adapted virus similar to A/Duck/Mongolia/54/2001 (H5N2). K222R and S227R mutations on rHA sequence shifted affinity towards Sialyl-LewisX and led to an increased affinity for chicken mucosa, confirming the involvement of these two mutations in the glycan-binding specificity of the HA. Interestingly, the rHA glycan binding pattern of guinea fowl appeared intermediate between duck and chicken. The present study presents a unique pathobiological description of the H5 HPAIVs outbreaks that occurred in 2015-2016 in Southwestern France
    • 

    corecore