53 research outputs found

    Aerogel Use as a Skin Protective Liner In Space Suits and Prosthetic Limbs Project

    Get PDF
    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications for use in space suits and orthopedics. Three tests were performed on several types of aerogel to assess the properties of each material, and our initial findings demonstrated that these materrials would be excellent candidates for liner applications for prosthetics and space suits. The project is currently on hold until additional funding is obtained for application testing at the VH Hospitals in Tamp

    Flight Operations and Research at NASA's Kennedy Space Center

    Get PDF
    .No abstract availabl

    Understanding organic thin film properties for microelectronic organic field-effect transistors and solar cells

    Get PDF
    The objective of this work is to understand how the thin film characteristics of p-type organic and polymer semiconductors affect their electronic properties in microelectronic applications. To achieve this goal, three main objectives were drawn out: (1) to create single-crystal organic field-effect transistors and measure the intrinsic charge carrier mobility, (2) to develop a platform for measuring and depositing polymer thin films for organic field-effect transistors, and (3) to deposit polythiophene thin films for inorganic-organic hybrid solar cells and determine how thin film properties effect device performance. Pentacene single-crystal field-effect transistors (OFETs) were successfully manufactured on crystals grown via horizontal vapor-phase reactors designed for simultaneous ultrapurification and crystal growth. These OFETs led to calculated pentacene field-effect mobility of 2.2 cm2/Vs. During the sublimation of pentacene at atmospheric pressure, a pentacene disporportionation reaction was observed whereby pentacene reacted with itself to form a peripentacene, a 2:1 cocrystal of pentacene:6,13-dihydropentacene and 6,13-dihydropentacene. This has led to the proposal of a possible mechanism for the observed disproportionation reaction similar to other polyaromatic hydrocarbons, which may be a precursor for explaining the formation of graphite. Several silicon-based and PET-based field-effect transistor platforms were developed for the measurement of mobility of materials in the thin film state. These platforms were critically examined against one another and the single-crystal devices in order to determine the optimal device design for highest possible mobility data, both theoretically based on silicon technology and commercially based on individual devices on flexible substrates. Novel FET device designs were constructed with a single gate per device on silicon and PET as well as the commonly used common-gate device. It was found that the deplanarization effects and poor gate insulator quality of the individual gate devices led to lower overall performance when compared to the common gate approach; however, good transistor behavior was observed with field modulation. Additionally, these thin films were implemented into inorganic-organic hybrid and purely organic solid-state photovoltaic cells. A correlation was drawn between the thin film properties of the device materials and the overall performance of the device. It was determined that each subsequent layer deposited on the device led to a planarization effect, and that the more pristine the individual layer, the better device performance. The hybrid cells performed at VOC = 0.8V and JSC = 55A/cm2.Ph.D.Committee Chair: Laren Tolbert; Committee Member: Art Janata; Committee Member: David Collard; Committee Member: Marcus Weck; Committee Member: Mohan Srinivasarao; Committee Member: Uwe Bun

    Effective Utilization of Resources and Infrastructure for a Spaceport Network Architecture

    Get PDF
    Providing routine, affordable access to a variety of orbital and deep space destinations requires an intricate network of ground, planetary surface, and space-based spaceports like those on Earth (land and sea), in various Earth orbits, and on other extraterrestrial surfaces. Advancements in technology and international collaboration are critical to establish a spaceport network that satisfies the requirements for private and government research, exploration, and commercial objectives. Technologies, interfaces, assembly techniques, and protocols must be adapted to enable mission critical capabilities and interoperability throughout the spaceport network. The conceptual space mission architecture must address the full range of required spaceport services, from managing propellants for a variety of spacecraft to governance structure. In order to accomplish affordability and sustainability goals, the network architecture must consider deriving propellants from in situ planetary resources to the maximum extent possible. Water on the Moon and Mars, Mars' atmospheric CO2, and O2 extracted from lunar regolith are examples of in situ resources that could be used to generate propellants for various spacecraft, orbital stages and trajectories, and the commodities to support habitation and human operations at these destinations. The ability to use in-space fuel depots containing in situ derived propellants would drastically reduce the mass required to launch long-duration or deep space missions from Earth's gravity well. Advances in transformative technologies and common capabilities, interfaces, umbilicals, commodities, protocols, and agreements will facilitate a cost-effective, safe, reliable infrastructure for a versatile network of Earth- and extraterrestrial spaceports. Defining a common infrastructure on Earth, planetary surfaces, and in space, as well as deriving propellants from in situ planetary resources to construct in-space propellant depots to serve the spaceport network, will reduce exploration costs due to standardization of infrastructure commonality and reduction in number and types of interfaces and commodities

    Evaluation of an ATP Assay to Quantify Bacterial Attachment to Surfaces in Reduced Gravity

    Get PDF
    Aim: To develop an assay to quantify the biomass of attached cells and biofilm formed on wetted surfaces in variable-gravity environments. Methods and Results: Liquid cultures of Pseudomonas aeruginosa were exposed to 30-35 brief cycles of hypergravity (< 2-g) followed by free fall (i.e., reduced gravity) equivalent to either lunar-g (i.e., 0.17 normal Earth gravity) or micro-g (i.e., < 0.001 normal Earth gravity) in an aircraft flying a series of parabolas. Over the course of two days of parabolic flight testing, 504 polymer or metal coupons were exposed to a stationary-phase population of P. aeruginosa strain ERC1 at a concentration of 1.0 x 10(exp 5) cells per milliliter. After the final parabola on each flight test day, half of the material coupon samples were treated with either 400 micro-g/L ionic silver fluoride (microgravity-exposed cultures) or 1% formalin (lunar-gravity-exposed cultures). The remaining sample coupons from each flight test day were not treated with a fixative. All samples were returned to the laboratory for analysis within 2 hours of landing, and all biochemical assays were completed within 8 hours of exposure to variable gravity. The intracellular ATP luminescent assay accurately reflected cell physiology compared to both cultivation-based and direct-count microscopy analyses. Cells exposed to variable gravity had more than twice as much intracellular ATP as control cells exposed only to normal Earth gravity

    Lunar Soil Erosion Physics for Landing Rockets on the Moon

    Get PDF
    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor Ill spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon [1-3]. The low ejection angle and high velocity are concerns for the lunar outpost

    ISS to Gateway: Forging the Path to Space Exploration

    Get PDF
    Oral presentation will discuss the history of the ISS, ongoing research in space, and the plans for Gateway

    Polymer Chemistry

    Get PDF
    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment

    Color-Changing Sensors for Detecting the Presence of Hypergolic Fuels

    Get PDF
    Hypergolic fuel sensors were designed to incorporate novel chemochromic pigments into substrates for use in various methods of leak detection. There are several embodiments to this invention that would provide specific visual indication of hypergols used during and after transfer. The ability to incorporate these pigments into various polymer matrices provides a unique opportunity to manufacture nearly any type of sensor shape that is required. The vibrant color change from yellow to black instantaneously shows the worker the presence of hypergols in the area
    corecore