22 research outputs found

    Obesity and Metabolic Phenotypes (Metabolically Healthy and Unhealthy Variants) Are Significantly Associated with Prevalence of Elevated C-Reactive Protein and Hepatic Steatosis in a Large Healthy Brazilian Population

    Get PDF
    Background. Among the obese, the so-called metabolically healthy obese (MHO) phenotype is thought to confer a lower CVD risk as compared to obesity with typical associated metabolic changes.The present study aims to determine the relationship of different subtypes of obesity with inflammatory-cardiometabolic abnormalities. Methods. We evaluated 5,519 healthy, Brazilian subjects (43 ± 10 years, 78% males), free of known cardiovascular disease. Those with \u3c2 metabolic risk factors (MRF) were considered metabolically healthy, and thosewith BMI ≥ 25 kg/m2 and/or waist circumference meetingNCEP criteria for metabolic syndrome as overweight/obese (OW). High sensitivity C reactive protein (hsCRP) was measured to assess underlying inflammation and hepatic steatosis (HS) was determined via abdominal ultrasound. Results. Overall, 40% of OWindividuals were metabolically healthy, and 12% normal-weight had ≥2 MRF.The prevalence of elevated CRP (≥3mg/dL) and HS inMHO versus normal weight metabolically healthy group was 22% versus 12%, and 40%versus 8%respectively ( \u3c 0.001). BothMHOindividuals andmetabolically unhealthy normal weight (MUNW) phenotypes were associated with elevated hsCRP and HS. Conclusion. Our study suggests that MHO and MUNW phenotypes may not be benign and physicians should strive to treat individuals in these subgroups to reverse these conditions

    Beyond BMI: The “Metabolically healthy obese” phenotype & its association with clinical/subclinical cardiovascular disease and all-cause mortality -- a systematic review

    Get PDF
    Background: A subgroup has emerged within the obese that do not display the typical metabolic disorders associated with obesity and are hypothesized to have lower risk of complications. The purpose of this review was to analyze the literature which has examined the burden of cardiovascular disease (CVD) and all-cause mortality in the metabolically healthy obese (MHO) population. Methods: Pubmed, Cochrane Library, and Web of Science were searched from their inception until December 2012. Studies were included which clearly defined the MHO group (using either insulin sensitivity and/or components of metabolic syndrome AND obesity) and its association with either all cause mortality, CVD mortality, incident CVD, and/or subclinical CVD. Results: A total of 20 studies were identified; 15 cohort and 5 cross-sectional. Eight studies used the NCEP Adult Treatment Panel III definition of metabolic syndrome to define “metabolically healthy”, while another nine used insulin resistance. Seven studies assessed all-cause mortality, seven assessed CVD mortality, and nine assessed incident CVD. MHO was found to be significantly associated with all-cause mortality in two studies (30%), CVD mortality in one study (14%), and incident CVD in three studies (33%). Of the six studies which examined subclinical disease, four (67%) showed significantly higher mean common carotid artery intima media thickness (CCA-IMT), coronary artery calcium (CAC), or other subclinical CVD markers in the MHO as compared to their MHNW counterparts. Conclusions: MHO is an important, emerging phenotype with a CVD risk between healthy, normal weight and unhealthy, obese individuals. Successful work towards a universally accepted definition of MHO would improve (and simplify) future studies and aid inter-study comparisons. Usefulness of a definition inclusive of insulin sensitivity and stricter criteria for metabolic syndrome components as well as the potential addition of markers of fatty liver and inflammation should be explored. Clinicians should be hesitant to reassure patients that the metabolically benign phenotype is safe, as increased risk cardiovascular disease and death have been shown

    Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation

    Get PDF
    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma

    Beyond BMI: The “Metabolically healthy obese” phenotype & its association with clinical/subclinical cardiovascular disease and all-cause mortality -- a systematic review

    No full text
    Background: A subgroup has emerged within the obese that do not display the typical metabolic disorders associated with obesity and are hypothesized to have lower risk of complications. The purpose of this review was to analyze the literature which has examined the burden of cardiovascular disease (CVD) and all-cause mortality in the metabolically healthy obese (MHO) population. Methods. Pubmed, Cochrane Library, and Web of Science were searched from their inception until December 2012. Studies were included which clearly defined the MHO group (using either insulin sensitivity and/or components of metabolic syndrome AND obesity) and its association with either all cause mortality, CVD mortality, incident CVD, and/or subclinical CVD. Results: A total of 20 studies were identified; 15 cohort and 5 cross-sectional. Eight studies used the NCEP Adult Treatment Panel III definition of metabolic syndrome to define "metabolically healthy", while another nine used insulin resistance. Seven studies assessed all-cause mortality, seven assessed CVD mortality, and nine assessed incident CVD. MHO was found to be significantly associated with all-cause mortality in two studies (30%), CVD mortality in one study (14%), and incident CVD in three studies (33%). Of the six studies which examined subclinical disease, four (67%) showed significantly higher mean common carotid artery intima media thickness (CCA-IMT), coronary artery calcium (CAC), or other subclinical CVD markers in the MHO as compared to their MHNW counterparts. Conclusions: MHO is an important, emerging phenotype with a CVD risk between healthy, normal weight and unhealthy, obese individuals. Successful work towards a universally accepted definition of MHO would improve (and simplify) future studies and aid inter-study comparisons. Usefulness of a definition inclusive of insulin sensitivity and stricter criteria for metabolic syndrome components as well as the potential addition of markers of fatty liver and inflammation should be explored. Clinicians should be hesitant to reassure patients that the metabolically benign phenotype is safe, as increased risk cardiovascular disease and death have been shown141sem informaçã

    Rationale and design of the Baptist Employee Healthy Heart Study:A randomized trial assessing the efficacy of the addition of an interactive, personalized, web-based, lifestyle intervention tool to an existing health information web platform in a high-risk employee population

    Get PDF
    Background Metabolic syndrome (MetS) and diabetes confer a high risk for developing subsequent cardiovascular disease (CVD). Persons with MetS constitute 24–34 % of the employee population at Baptist Health South Florida (BHSF), a self-insured healthcare organization. The Baptist Employee Healthy Heart Study (BEHHS) aims to assess the addition of a personalized, interactive, web-based, nutrition-management and lifestyle-management program to the existing health-expertise web platform available to BHSF employees in reducing and/or stabilizing CVD and lifestyle risk factors and markers of subclinical CVD. Methods/design Subjects with MetS or Type II Diabetes will be recruited from an employee population at BHSF and randomized to either an intervention or a control arm. The intervention arm will be given access to a web-based personalized diet-modification and weight-modification program. The control arm will be reminded to use the standard informational health website available and accessible to all BHSF employees. Subjects will undergo coronary calcium testing, carotid intima-media thickness scans, peripheral arterial tonometry, and advanced lipid panel testing at visit 1, in addition to lifestyle and medical history questionnaires. All tests will be repeated at visits 2 and 4 with the exception of the coronary calcium test, which will only be performed at baseline and visit 4. Visit 3 will capture vitals, anthropometrics, and responses to the questionnaires only. Conclusion Results of this study will provide information on the effectiveness of personalized, web-based, lifestyle-management tools in reducing healthcare costs, promoting healthy choices, and reducing cardiovascular risk in an employee population. It will also provide information about the natural history of carotid atherosclerosis and endothelial dysfunction in asymptomatic but high-risk populations
    corecore