9 research outputs found

    Semantic integration of clinical laboratory tests from electronic health records for deep phenotyping and biomarker discovery.

    Get PDF
    Electronic Health Record (EHR) systems typically define laboratory test results using the Laboratory Observation Identifier Names and Codes (LOINC) and can transmit them using Fast Healthcare Interoperability Resource (FHIR) standards. LOINC has not yet been semantically integrated with computational resources for phenotype analysis. Here, we provide a method for mapping LOINC-encoded laboratory test results transmitted in FHIR standards to Human Phenotype Ontology (HPO) terms. We annotated the medical implications of 2923 commonly used laboratory tests with HPO terms. Using these annotations, our software assesses laboratory test results and converts each result into an HPO term. We validated our approach with EHR data from 15,681 patients with respiratory complaints and identified known biomarkers for asthma. Finally, we provide a freely available SMART on FHIR application that can be used within EHR systems. Our approach allows readily available laboratory tests in EHR to be reused for deep phenotyping and exploits the hierarchical structure of HPO to integrate distinct tests that have comparable medical interpretations for association studies

    FAIRshake: toolkit to evaluate the findability, accessibility, interoperability, and reusability of research digital resources

    Get PDF
    As more datasets, tools, workflows, APIs, and other digital resources are produced by the research community, it is becoming increasingly difficult to harmonize and organize these efforts for maximal synergistic integrated utilization. The Findable, Accessible, Interoperable, and Reusable (FAIR) guiding principles have prompted many stakeholders to consider strategies for tackling this challenge by making these digital resources follow common standards and best practices so that they can become more integrated and organized. Faced with the question of how to make digital resources more FAIR, it has become imperative to measure what it means to be FAIR. The diversity of resources, communities, and stakeholders have different goals and use cases and this makes assessment of FAIRness particularly challenging. To begin resolving this challenge, the FAIRshake toolkit was developed to enable the establishment of community-driven FAIR metrics and rubrics paired with manual, semi- and fully-automated FAIR assessment capabilities. The FAIRshake toolkit contains a database that lists registered digital resources, with their associated metrics, rubrics, and assessments. The FAIRshake toolkit also has a browser extension and a bookmarklet that enables viewing and submitting assessments from any website. The FAIR assessment results are visualized as an insignia that can be viewed on the FAIRshake website, or embedded within hosting websites. Using FAIRshake, a variety of bioinformatics tools, datasets listed on dbGaP, APIs registered in SmartAPI, workflows in Dockstore, and other biomedical digital resources were manually and automatically assessed for FAIRness. In each case, the assessments revealed room for improvement, which prompted enhancements that significantly upgraded FAIRness scores of several digital resources

    A public resource facilitating clinical use of genomes

    No full text
    Rapid advances in DNA sequencing promise to enable new diagnostics and individualized therapies. Achieving personalized medicine, however, will require extensive research on highly reidentifiable, integrated datasets of genomic and health information. To assist with this, participants in the Personal Genome Project choose to forgo privacy via our institutional review boardapproved "open consent" process. The contribution of public data and samples facilitates both scientific discovery and standardization of methods. We present our findings after enrollment of more than 1,800 participants, including whole-genome sequencing of 10 pilot participant genomes (the PGP-10).We introduce the Genome-Environment-Trait Evidence (GET-Evidence) system. This tool automatically processes genomes and prioritizes both published and novel variants for interpretation. In the process of reviewing the presumed healthy PGP-10 genomes, we find numerous literature references implying serious disease. Although it is sometimes impossible to rule out a late-onset effect, stringent evidence requirements can address the high rate of incidental findings. To that end we develop a peer production system for recording and organizing variant evaluations according to standard evidence guidelines, creating a public forum for reaching consensus on interpretation of clinically relevant variants. Genome analysis becomes a two-step process: using a prioritized list to record variant evaluations, then automatically sorting reviewed variants using these annotations. Genome data, health and trait information, participant samples, and variant interpretations are all shared in the public domain - we invite others to review our results using our participant samples and contribute to our interpretations. We offer our public resource and methods to further personalized medical research.close555
    corecore