121 research outputs found

    Sponges of the family Esperiopsidae (Demospongiae, Poecilosclerida) from Northwest Africa, with the descriptions of four new species

    Get PDF
    Sponges belonging to the genera Amphilectus Vosmaer, Esperiopsis Carter and Ulosa de Laubenfels of the family Esperiopsidae were collected during 1986 and 1988 expeditions of the Netherlands Centre for Biodiversity Naturalis (at that time the National Museum of Natural History at Leiden and the Zoological Museum of Amsterdam) in waters off the coasts of Mauritania and the Cape Verde Islands. Four new species, Amphilectus utriculus sp. nov., Amphilectus strepsichelifer sp. nov., Esperiopsis cimensis sp. nov., Ulosa capblancensis sp. nov., and two already known species, Amphilectus cf. fucorum (Esper) and Ulosa stuposa (Esper) are described and discussed

    Affinities of the family Sollasellidae (Porifera, Demospongiae). II. Molecular evidence

    Get PDF
    This is the second part of a revision and re-classification of the demosponge family Sollasellidae, and an example of a successful use of combined morphological and molecular data. Sollasella had been a poorly known, long forgotten taxon, placed incertae sedis in the order Hadromerida in the last major revision of the demosponges. It has recently been suggested to belong to Raspailiidae in the order Poecilosclerida due to striking morphological similarities. The present analysis verified this re-classification using molecular markers. Comparing 28S rDNA fragments of Sollasella cervicornis, a newly described species S. moretonensis and a representative set of raspailiid and hadromerid samples. In our analyses Sollasella clearly clusters inside the Raspailiidae clade, and distantly from hadromerid taxa. Supporting morphological hypothesis of Van Soest et al. (2006), that Sollasella is a raspailiid sponge

    Soft sponges with tricky tree: On the phylogeny of dictyoceratid sponges

    Get PDF
    Keratose (horny) sponges constitute a very difficult group of Porifera in terms of taxonomy due to their paucity of diagnostic morphological features. (Most) keratose sponges possess no mineral skeletal elements, but an arrangement of organic (spongin) fibers, with little taxonomic or phylogenetic information. Molecular phylogenetics have targeted this evolutionary and biochemically important lineage numerous times, but the conservative nature of popular markers combined with ambiguous identification of the sponge material has so far prevented any robust phylogeny. In the following study, we provide a phylogenetic hypothesis of the keratose order Dictyoceratida based on nuclear markers of higher resolution potential (ITS and 28S C‐region), and particularly aim for the inclusion of type specimens as reference material. Our results are compared with previously published data of CO1, 18S, and 28S (D3‐D5) data, and indicate the paraphyly of the largest dictyoceratid family, the Thorectidae, due to a sister group relationship of its subfamily Phyllospongiinae with Family Spongiidae. Irciniidae can be recovered as monophyletic. Results on genus level and implications on phylogenetic signals of the most frequently described morphological characters are discussed

    Preliminary Assessment of Sponge Biodiversity on Saba Bank, Netherlands Antilles

    Get PDF
    Background Saba Bank Atoll, Netherlands Antilles, is one of the three largest atolls on Earth and provides habitat for an extensive coral reef community. To improve our knowledge of this vast marine resource, a survey of biodiversity at Saba Bank included a multi-disciplinary team that sampled fishes, mollusks, crustaceans, macroalgae, and sponges. Methodology/Principal Findings A single member of the dive team conducted surveys of sponge biodiversity during eight dives at six locations, at depths ranging from 15 to 30 m. This preliminary assessment documented the presence of 45 species pooled across multiple locations. Rarefaction analysis estimated that only 48 to 84% of species diversity was sampled by this limited effort, clearly indicating a need for additional surveys. An analysis of historical collections from Saba and Saba Bank revealed an additional 36 species, yielding a total of 81 sponge species recorded from this area. Conclusions/Significance This observed species composition is similar to that found on widespread Caribbean reefs, indicating that the sponge fauna of Saba Bank is broadly representative of the Caribbean as a whole. A robust population of the giant barrel sponge, Xestospongia muta, appeared healthy with none of the signs of disease or bleaching reported from other Caribbean reefs; however, more recent reports of anchor chain damage to these sponges suggests that human activities can have dramatic impacts on these communities. Opportunities to protect this extremely large habitat should be pursued, as Saba Bank may serve as a significant reservoir of sponge species diversity

    Nothing in (sponge) biology makes sense - except when based on holotypes

    Get PDF
    Sponge species are infamously difficult to identify for non-experts due to their high morphological plasticity and the paucity of informative morphological characters. The use of molecular techniques certainly helps with species identification, but unfortunately it requires prior reference sequences. Holotypes constitute the best reference material for species identification, however their usage in molecular systematics and taxonomy is scarce and frequently not even attempted, mostly due to their antiquity and preservation history. Here we provide case studies in which we demonstrate the importance of using holo-type material to answer phylogenetic and taxonomic questions. We also demonstrate the possibility of sequencing DNA fragments out of century-old holotypes. Furthermore we propose the deposition of DNA sequences in conjunction with new species descriptions

    Phylogenetic Relationships of the Marine Haplosclerida (Phylum Porifera) Employing Ribosomal (28S rRNA) and Mitochondrial (cox1, nad1) Gene Sequence Data

    Get PDF
    The systematics of the poriferan Order Haplosclerida (Class Demospongiae) has been under scrutiny for a number of years without resolution. Molecular data suggests that the order needs revision at all taxonomic levels. Here, we provide a comprehensive view of the phylogenetic relationships of the marine Haplosclerida using many species from across the order, and three gene regions. Gene trees generated using 28S rRNA, nad1 and cox1 gene data, under maximum likelihood and Bayesian approaches, are highly congruent and suggest the presence of four clades. Clade A is comprised primarily of species of Haliclona and Callyspongia, and clade B is comprised of H. simulans and H. vansoesti (Family Chalinidae), Amphimedon queenslandica (Family Niphatidae) and Tabulocalyx (Family Phloeodictyidae), Clade C is comprised primarily of members of the Families Petrosiidae and Niphatidae, while Clade D is comprised of Aka species. The polyphletic nature of the suborders, families and genera described in other studies is also found here

    Global Diversity of Sponges (Porifera)

    Get PDF
    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all ‘known’ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future

    The Magnitude of Global Marine Species Diversity

    Get PDF
    Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are ∼226,000 eukaryotic marine species described. More species were described in the past decade (∼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are ∼170,000 synonyms, that 58,000–72,000 species are collected but not yet described, and that 482,000–741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7–1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century
    corecore