Affinities of the family Sollasellidae (Porifera, Demospongiae). II. Molecular evidence

Dirk Erpenbeck^{1,2,3}, John N.A. Hooper¹, Sue E. List-Armitage¹, Bernard M. Degnan³, Gert Wörheide² and Rob W.M. van Soest⁴

¹Biodiversity Program, Queensland Museum, PO Box 3300, South Brisbane, Qld, 4101, Australia, derpenb@gwdg. de; ²Dept. of Geobiology, Geoscience Centre Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany; ³School of Integrative Biology, The University of Queensland, St Lucia, Qld, 4072, Australia; ⁴Zoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands

Key words: sponges, classification, Raspailiidae, Sollasella, Raspailopsis, 28S rDNA, molecular systematics

Abstract

This is the second part of a revision and re-classification of the demosponge family Sollasellidae, and an example of a successful use of combined morphological and molecular data. *Sollasella* had been a poorly known, long forgotten taxon, placed *incertae sedis* in the order Hadromerida in the last major revision of the demosponges. It has recently been suggested to belong to Raspailiidae in the order Poecilosclerida due to striking morphological similarities. The present analysis verified this re-classification using molecular markers. Comparing 28S rDNA fragments of *Sollasella cervicornis*, a newly described species *S. moretonensis* and a representative set of raspailiid and hadromerid samples. In our analyses *Sollasella* clearly clusters inside the Raspailiidae clade, and distantly from hadromerid taxa. Supporting morphological hypothesis of Van Soest *et al.* (2006), that *Sollasella* is a raspailiid sponge.

Contents

Introduction	. 95
Material and methods	. 96
Results	. 96
Discussion	101
Acknowledgements	101
References	102

Introduction

A morphological re-examination of material of the demosponge family Sollasellidae has shed a new light on its classification (Van Soest *et al.*, 2006). This monospecific, previously poorly known family, with the type locality in East Australia (*Sollasella digitata* Lendenfeld, 1888), had been nearly completely forgotten since Hall-

mann (1914), and consequently assigned more recently as incertae sedis in the order Hadromerida based on its cortex and radiating skeleton (Hooper and Van Soest, 2002). However, the recent collection and examination of a morphologically similar sponge from Oman identified as Raspailopsis cervicornis Burton, 1959 (= Raspailia (Parasvringella) cervicornis sensu Hooper, 2002b), raised evidence for a placement of Sollasella in the family Raspailiidae (order Poecilosclerida, Van Soest et al., 2006). After further morphological analyses, R. cervicornis was merged with Sollasella forming the twentieth valid genus in the Raspailiidae (Van Soest et al., 2006). In the same publication Van Soest and colleagues describe a similar species from subtropical Australia, Sollasella moretonensis, which shares the characteristic polygonal perforation-like surface pattern of S. cervicornis and S. digitata, in addition to other features. These polygonal surface structures remain a distinguishing feature for the genus.

The aim of our analysis is to test the hypothesis that *Sollasella* is more closely related to poecilosclerid taxa as concluded recently based on morphologic data in the family Raspaillidae than to hadromerid sponges (Van Soest *et al.*, 2006). Among candidate hadromerid taxa are Polymastiidae, with which *Sollasella* shares the presence of a cortex (particularly the genus *Pseudotrachya*, with which *Sollasella* shares the combination of choanosomal styles and ectosomal oxeas), and Suberitidae, with which *Sollasella* shares the stalked habit and axially condensed skeleton (genera *Homaxinella, Plicatellopsis, Rhizaxinella*, see Van Soest, 2002a). There is also an apparent slight affinity with Stylocordylidae (Van Soest, 2002b).

Reliability of morphological systematics in sponges is hampered by the paucity of complex characters, many of which are also prone to homoplasies. The family Raspailiidae, as in many other demosponge taxa, does not possess unique autapomorphies, and is defined by a combination of characters that may each be found also in some other demosponge orders and families (see Hooper, 2002b). DNA sequence data should provide independent evidence to test morphological hypotheses. However, sponge molecular systematics has pitfalls of its own such that phylogenies arising from these analyses need to be cautiously interpreted pending better insight into demosponge molecular evolution. Molecular data occasionally generate hypotheses that conflict dramatically with phylogenies based on morphological characters (e.g., McCormack et al., 2002; Erpenbeck et al., 2006). Improved algorithms may aid to filter the correct phylogenetic signal from random noise and provide explanations for the occasionally 'odd' phylogenies. Nevertheless, sponge molecular systematics has repeatedly been shown to outcompete morphological approaches (e.g. Erpenbeck et al., 2006).

In our present approach we generate and analyse 28S rDNA data from specimens of *Sollasella cervicornis* (sensu Van Soest *et al.*, 2006) from Oman, *Sollasella moretonensis* from northeastern Australia, and several species of other Raspailiidae. The sequences are compared with data sets from Erpenbeck *et al.* (2005) and partially from Nichols (2005), which is currently the most comprehensive 28S rDNA data set with a strong representation of hadromerid sequences.

Material and methods

The list of specimens used in this analysis is given in Table 1. We chose the 28S D3-D5 fragment for which a comprehensive taxon set has been sequenced. However, no amplifiable DNA could be obtained from material of the type specimen of the family Sollasellidae, Sollasella digitata, from the Australian Museum in Sydney (AM G9107). Sequences of Sollasella cervicornis, S. moretonensis and a representative set of Raspailiidae have been recently generated and are deposited in GenBank (see table 1). Their DNA was extracted with Qiagen DNeasy kits. PCR primers employed were taken from McCormack et al. (2002) (RD3A: GACCCGTCTTGAAACACGA and RD5B2: ACACACTCCTTAGCGGA, temperature regime: 94°C 2 min, 35 cycles at 94°C 30 sec; 47°C 20 sec; 65°C 30 sec, followed by 65°C 10 min). PCR amplifications contained 11.25 µl ddH₂O, 4.15 µl dNTP (10

mM), 3.25 µl MgCl₂ (25 mM), 2.5 µl 10× HotMaster PCR Buffer, 2.5 µl BSA (100 mM, Sigma), 0.5 µl primer (10 mM) and 4 µl HotMaster polymerase (Eppendorf). The BSA was used only on the Sollasella moretonensis DNA extracts and replaced with ddH₂O for all other samples. Cycle sequencing of both strands was performed with BigDye terminator v1.1 (ABI) and a capillary sequencer (ABI). MacClade 4.06 (Maddison and Maddison, 1992) was used for sequence management and manual alignment. The sequences were incorporated into two modified alignments based on secondary structure information. They consisted of the full length D3-D5 data set as published in Erpenbeck et al. (2005) and a second, shorter data set with additional overlapping sequences of Nichols (2005). As this overlap data set is comparatively short - it resulted in an alignment with 441 characters - we restricted ourselves to incorporate only those sequences of Nichols (2005) with a complete 5' region (see Table 1) and used it for comparative purposes only.

Phylogenetic relationships were reconstructed with Bayesian inference methods (BI) using MrBayes 3.1 (Ronquist and Huelsenbeck, 2003). Potential overparameterization does not influence the correctness of BI reconstructions in MrBayes (Huelsenbeck et al., 2001). Therefore, the GTR+G+I model was chosen for all BI analyses of the D3-D5 data set and non-pairing sites in secondary structure specific analyses with the Nichols' (2005) data set (SH for paring sites, see Erpenbeck et al. 2007 for details). Results were compared with Minimum-evolution (ME) reconstructions under Maximum-likelihood (ML) distances. Modeltest 3.06 (Posada and Crandall, 1998) estimated the relatively best-fitting ML-model. Bayesian inference analyses consisted of two runs of four Markov chains each for maximal 10,000,000 generations. Runs were stopped automatically when the average standard deviation of split frequencies dropped below 0.01. All other phylogenetic analyses were performed with PAUP*b10 (Swofford, 2002). The ME bootstrap values were calculated on 1000 replicates on maximum likelihood distances. Different phylogenetic hypotheses were tested using the COUNSEL 0.942 package (Shimodaira and Hasegawa, 2001) under default settings.

Results

The different phylogenetic reconstruction methods of both data sets displayed identical results on the position of the *Sollasella cervicornis* sequence. In the longer data set this sequence clusters inside a clade comprising all the other Raspailiidae sequences including *Raspailia (Raspailia)*, *R. (Raspaxilla)* and *Eurypon* (Fig. 1). This pattern is supported by high posterior and bootstrap probabilities (BI: 100, ME: 94). Similarly, sequences of the newly described species *Sollasella moretonensis* cluster in the same clade as the Raspailiidae, but the genus *Sollasella* is not recovered as

Table 1.	Sample list with t	he accession numbers	s for the particular	· data sets. (N	New sequences	are highlighted in bold.)

Order	Family	Taxon	Acc.Nr.
Agelasida	Agelasidae	Agelas oroides	AY319311
Agelasida	Agelasidae	<i>Agelas</i> sp.	AY561929
Agelasida	Astroscleridae	Astrosclera willeyana	AY561928
Astrophorida	Ancorinidae	Ecionemia sp.	AY561938
Astrophorida	Ancorinidae	Holoxea sp.	AY561942
Astrophorida	Ancorinidae	Melophlus sp.	AY561940
Astrophorida	Ancorinidae	Rhabdastrella sp.	AY561939
Astrophorida	Geodiidae	Geodia media	AY561937
Astrophorida	Incertae Sedis	Lamellomorpha sp.	AY561941
Calcaronea	Leucosoleniidae	Leucosolenia sp.	AY026372
Chondrosida	Chondrillidae	Chondrilla australiensis	AY561867
Chondrosida	Chondrillidae	Chondrilla sp.	AY561868
Chondrosida	Chondrillidae	Chondrosia sp.	AY561866
Chondrosida	Chondrillidae	Chondrosia sp.	AJ005916
Dictyoceratida	Dysideidae	Lamellodysidea chlorea	AY561957
Dictyoceratida	Irciniidae	Ircinia ramosa	EF507818
Dictyoceratida	Spongiidae	Spongia sp.	AY561951
Hadromerida	Clionaidae	Cliona sp.	AY561886
Hadromerida	Clionaidae	Spheciospongia vagabunda	AY319310
Hadromerida	Hemiasterellidae	Hemiasterella sp. 1	AY561901
Hadromerida	Hemiasterellidae	Hemiasterella sp. 2	AY561946
Hadromerida	Hemiasterellidae	Hemiasterella sp. 3	AY561947
Hadromerida	Placospongiidae	Placospongia sp.	AY561896
Hadromerida	Polymastiidae	Polymastia invaginata	AY561922
Hadromerida	Polymastiidae	Pseudotrachya sp.	AY561965
Hadromerida	Spirastrellidae	Diplastrella megastellata	AY561893
Hadromerida	Suberitidae	Aaptos suberitoides	AY319308
Hadromerida	Suberitidae	Pseudosuberites sp.	AY561917
Hadromerida	Suberitidae	<i>Rhizaxinella</i> sp.	AY561910
Hadromerida	Suberitidae	Suberites ficus	AY026381
Hadromerida	Suberitidae	Suberites suberia	AY319309
Hadromerida	Tethyidae	Stellitethya ingens	AY561899
Hadromerida	Timeidae	Timea lowchoyi	AY561871
Hadromerida	Timeidae	<i>Timea</i> sp.	AY561907
Halichondrida	Axinellidae	Axinella damicornis	AY319314
Halichondrida	Axinellidae	Axinella polypoides	AY618728
Halichondrida	Axinellidae	Axinella verrucosa	AY319312
Halichondrida	Heteroxyidae	Didiscus oxeata	AY319320
Halichondrida	Heteroxyidae	Didiscus sp.	AY561948
Halichondrida	Heteroxyidae	Myrmekioderma granulata	AY319319
Halichondrida	Dictyonellidae	Acanthella acuta	AY319322
Halichondrida	Dictyonellidae	Acanthella sp.	AY561936
Halichondrida	Dictyonellidae	Dictyonella sp.	AY319325
Halichondrida	Dictyonellidae	Liosina paradoxa	AY319318
Halichondrida	Dictyonellidae	Scopalina lophyropoda	AY319323
Halichondrida	Dictyonellidae	Scopalina ruetzleri	AY561872
Halichondrida	Dictyonellidae	Stylissa flabelliformis	AY319316
Halichondrida	Dictyonellidae	Svenzea zeai	AF441349
Halichondrida	Halichondriidae	Amorphinopsis excavans	AY319313

D. Erpenbeck et al. – Affinities of sponge family Sollasellidae

Halichondrida Halichondrida Halichondrida Halichondrida Haplosclerida Homosclerophorida Homosclerophorida "Lithistida" "Lithistida" "Lithistida" "Lithistida" "Lithistida" Poecilosclerida Spirophorida Spirophorida Verongida Verongida Verongida Cnidaria (outgroup)

Halichondriidae Halichondriidae Halichondriidae Halichondriidae Callyspongiidae Callyspongiidae Chalinidae Chalinidae Chalinidae Chalinidae Chalinidae Chalinidae Niphatidae Niphatidae Niphatidae Niphatidae Petrosiidae Petrosiidae Petrosiidae Petrosiidae Petrosiidae Petrosiidae Phloeodictyidae Phloeodictyidae Plakinidae Plakinidae Corallistidae Scleritodermidae Theonellidae Theonellidae Vetulinidae Coelosphaeridae Isodictyidae Isodictyidae Mycalidae Raspailiidae Tetillidae Tetillidae Aplysinellidae Aplysinidae Pseudoceratinidae Zoantharia

Axinyssa aplysinoides	AY319324
Halichondria bowerbanki	AY646836
Halichondria panicea	AY319315
Hymeniacidon perlevis	AY618715
Callyspongia (Callyspongia) multiformis	AF441344
Callyspongia (Cladochalina) plicifera	AF441343
Haliclona (Gellius) toxius	AF441342
Haliclona (Halichoclona) vansoesti	AF441346
Haliclona (Haliclona) oculata 2	AF441330
Haliclona (Haliclona) oculata 1	identical
Haliclona (Soestella) xena	AY319327
Haliclona cinerea	AF441339
Amphimedon compressa	AF441351
Amphimedon paraviridis	AF441350
Ninhates olemda	AF441353
Pachychalina sp	Δ F441353
1 achychaina sp. Acanthostrongylophora ashmorica	AF441352
Acanthostrongylophora ingans	AV210226
Acaninosirongyiophora ingens	AT 519520
Neopetrosta subtriangularis	AF441341
Petrosia jicijormis	AF44154/
Petrosia sp.	AY 501859
Xestospongia caminata	AF441348
Aka coralliphaga	AF441345
<i>Oceanapia</i> sp.	AY 561857
Plakinastrella sp. 1	AY 561869
Plakinastrella sp. 2	AY 561870
Corallistes sp.	AJ005913
Aciculites sp.	AY 561945
Discodermia dissoluta	AJ005914
<i>Theonella</i> sp.	AJ005917
<i>Vetulina</i> sp.	AJ005915
Lissodendoryx topsenti	AY561876
Coelocarteria singaporensis	AY561874
Coelocarteria sp.	AY561875
Mycale fibrexilis	AY026376
<i>Eurypon</i> sp. G305782	EF507817
Raspailia (Raspailia) sp. G312932	EF507819
<i>Raspailia (Raspailia)</i> n. sp. G315208	EF507820
Raspailia (Raspaxilla) topsenti G312182	EF507821
Raspailia (Raspaxilla) sp. G304865	EF507823
Raspailia (Raspaxilla) sp. G314949	EF507822
Raspailia (Raspaxilla) sp. G315648	EF507824
Aulosponges n. sp. G320085	EF507825
Sollasella cervicornis POR 17450	EF507826
Sollasella moretonensis G303059	EF507827
Sollasella moretonensis G303205	EF507828
Sollasella moretonensis G303227	EF507829
Sollasella moretonensis G303996	EF507830
Sollasella moretonensis G306153	EF507831
Sollasella moretonensis G315719	EF507832
Sollasella moretonensis G315759	EF507833
Sollasella moretonensis G321402	EF507834
Cinachyrella sp.	AY561943
Tetilla arb	AY561944
Aplysinella sp.	AY561865
Aplysina fistularis	AY561864
Pseudoceratina sp.	AY561956
Antipathes galapagensis	AY026365

0.1 substitutions / site

Fig. 1. Bayesian inference consensus tree of the D3-D5 data set. The non-italic numbers refer to Bayesian posterior probabilities. Numbers in italics are Minimum-evolution bootstrap support values of corresponding clades. Values lower than 75 are omitted from both methods. Numbers behind taxon names are QM voucher specimen numbers.

monophyletic in those reconstructions using molecular data, as its members form an unresolved polytomic clade with Eurypon sp. Nevertheless, the position of Sollasella in these reconstructions is clearly more distant from the Hadromerida representatives of this particular data set, viz. the Clionaidae Spheciospongia vagabunda and the Suberitidae Suberites spp. and

A more representative Hadromerida taxon set was obtained after merging the data with the sequences of Nichols (2005), with sequences from multiple hadromerid families. Although this data set is considerably shorter, and therefore more poorly resolved due to having fewer informative characters, there is no indication of a closer relationship of Sollasella with any Hadromerida (Fig. 2). Regarding the position of Sollasella the resulting phylogenetic topology is congruent with the previous results using the smaller taxon set. The Sollasella cervicornis and S. moretonensis cluster is well-supported within the Raspailiidae, which forms a strongly supported clade. This pattern

Table 2. Output of COUNSEL 0.942b on the support of two different hypotheses (*Sollasella* + Raspailiidae (Sol+Ras) against *Sollasella* + Hadromerida (Sol+Had). See Shimodaira and Hasegawa (2001) for further details and references.

rank	Hypoth.	obs	au ^a	np ^b	bp ^c	pp ^d	kh ^e	sh ^f	wkh ^g	wsh ^h
1	Sol+Ras	-445.1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	Sol+Had	445.1	5e-042	3e-015	0	5e-194	9e-005	9e-005	9e-005	9e-005

^a *P*-value of the approximately unbiased test.

^b Bootstrap probability of the selection.

^c Bootstrap probability calculated directly from the replicates.

^dBayesian posterior probability (PP) calculated by the BIC approximation.

eP-value of the Kishino-Hasegawa (KH) test.

^f P-value of the Shimodaira-Hasegawa (SH) test.

^g P-value of the weighted Kishino-Hasegawa (WKH) test.

h P-value of the weighted Shimodaira-Hasegawa (WSH) test.

Discussion

The molecular analysis of the 28SrDNA provides a clear picture of the phylogenetic position of *Sollasella* in the classification of demosponges. These 28S sequence data fully support the morphological hypothesis of Van Soest *et al.* (2006) that *Sollasella* should be classified within the Raspailiidae of the order Poecilosclerida and not as a hadromerid sponge. The family Sollasellidae Lendenfeld, 1887, which was previously assigned as *incertae sedis* in the Hadromerida (Van Soest, 2002), has therefore been abandoned.

Our data provides an example of the successful application of molecular tools to sponge phylogeny without contradicting current morphological hypotheses and posing additional questions (e.g., McCormack et al., 2002; McCormack and Kelly 2002; Nichols, 2005; Erpenbeck et al., 2005). Conversely, the resulting phylogenies provide us with another pattern that needs further explanation: the clustering of the Heteroxyidae Myrmekioderma granulata and Didiscus oxeata with the Raspailiidae. Although the coherence of the family Heteroxyidae is unverified and molecular data could not unambiguously assign them to the Halichondrida (Erpenbeck et al., 2005), a relationship with Raspailiidae appears unlikely based on morphometric characteristics. The largely confused arrangement of oxeote megascleres with ectosomal microxeas in Heteroxyidae differs fundamentally from the structured raspailiid skeleton. Although the polygonal grooves found in Sollasella are remarkably similar to those seen in Didiscus and Myrmekioderma, these have probably have been acquired independently. In Didiscus the surface is "strongly grooved with angular striations forming polygonal plates; plates contractile with oscula in between". In Myrmekioderma the surface is "convoluted with large conules or rounded or polygonal plates, each separated by shallow but distinct grooves, excavated channels containing large oscula" (Hooper, 2002a). This is morphologically and functionally different from Sollasella, whose surface is "provided with a characteristic polygonal pattern of lines of round shallow depressions presumed to be inhalant openings" (Van Soest, 2002, from Hallmann, 1914). Such similarity of 28S rDNA sequences is comparable with other instances in which 28S rDNA resulted in "odd" phylogenies (e.g. McCormack et al. 2002). More intensive studies on the molecular evolution of 28S rRNA genes in demosponges are required to explain such phenomena. Nevertheless, the present analysis has demonstrated that the clustering of Sollasella with the Raspailiidae is clearly no such '28S rDNA' artefact because an alternative data set (morphology) provides independent evidence for this scenario.

Acknowledgements

The authors thank Penny Berents, Australian Museum Sydney for providing us with type material of *S. digitata*, Jessica Worthington-Wilmer and the Molecular Identities Laboratory (M. I.L.) of the Queensland Museum for assistance in the lab and furthermore the supercomputing facility of the University of Göttingen (GWDG). Further thanks to Elly Beglinger, Zoological Museum Amsterdam. DE acknowledges financial support of the European Union under a Marie-Curie outgoing fellowship (MOIF-CT-2004 Contract No 2882). GW acknowledges funding from the German Research Foundation (DFG: Projects Wo896/3, 6).

References

- Dohrmann M, Voigt O, Erpenbeck D, Wörheide G. 2006. Nonmonophyly of most supraspecific taxa of calcareous sponges (Porifera, Calcarea) revealed by increased taxon sampling and partitioned Bayesian analysis of ribosomal DNA. *Molecular Phylogenetics and Evolution* 40: 830-843.
- Erpenbeck D, Breeuwer JAJ, Parra FJ, van Soest RWM. 2006. Speculation with spiculation? – Three independent gene fragments and biochemical characters versus morphology in demosponge higher classification. *Molecular Phylogenetics* and Evolution 38: 293-305.
- Erpenbeck D, Breeuwer JAJ, van Soest RWM. 2005. Implications from a 28S rRNA gene fragment for the phylogenetic relationships of halichondrid sponges (Porifera: Demospongiae). *Journal of Zoological Systematics and Evolutionary Research* 43: 93-99.
- Erpenbeck D, Nichols SA, Voigt O, Dohrmann M, Degnan BM, Hooper JNA, Wörheide G. 2007. Phylogenetic analyses under secondary structure-specific substitution models outperform traditional approaches - case studies with diploblast LSU. *Journal of Molecular Evolution* 54: 543-557.
- Hallmann EF. 1914. A revision of the monaxonid species described as new in Lendenfeld's 'Catalogue of the Sponges in the Australian Museum'. Part I, II, III. Proceedings of the Linnean Society of New South Wales 39: 263-315, 327-376, 398-446, pls XV-XXIV.
- Hooper JNA. 2002a. Family Desmoxyidae Hallmann, 1916. In: Systema Porifera. Guide to the classification of sponges (Ed. by Hooper JNA and van Soest RWM), pp. 755-772. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic/ Plenum Publishers.
- Hooper JNA. 2002b. Family Raspailiidae Hentschel, 1923. In: Systema Porifera. Guide to the classification of sponges (Ed. by Hooper JNA and van Soest RWM), pp. 469-510. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic/ Plenum Publishers.
- Hooper JNA, van Soest RWM. 2002. Systema Porifera, A guide to the classification of sponges. New York: Kluwer Academic/Plenum Publishers.
- Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. 2001. Evo-

lution - Bayesian inference of phylogeny and its impact on evolutionary biology. *Science* 294: 2310-2314.

- McCormack GP, Erpenbeck D, van Soest RWM. 2002. Major discrepancy between phylogenetic hypotheses based on molecular and morphological criteria within the Order Haplosclerida (Phylum Porifera : Class Demospongiae). Journal of Zoological Systematics and Evolutionary Research 40: 237-240.
- Nichols SA. 2005. An evaluation of support for order-level monophyly and interrelationships within the class Demospongiae using partial data from the large subunit rDNA and cytochrome oxidase subunit I. *Molecular Phylogenetics and Evolution* 34: 81-96.
- Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution. *Bioinformatics* 14: 817-818.
- Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572-1574.
- Shimodaira H, Hasegawa M. 2001. CONSEL: for assessing the confidence of phylogenetic tree selection. *Bioinformatics* 17: 1246-1247.
- Van Soest RWM. 2002a. Family Suberitidae Schmidt, 1870. In: Systema Porifera. A guide to the classification of sponges (Ed. by Hooper JNA and van Soest RWM), pp. 227-244. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic/ Plenum Publishers.
- Van Soest RWM. 2002b. Family Sollasellidae Lendenfeld, 1887. In: Systema Porifera. A guide to the classification of sponges (Ed. by Hooper JNA and van Soest RWM), pp. 279-280. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic/ Plenum Publishers.
- Van Soest RWM, Hooper JNA, Beglinger E, Erpenbeck D. 2006. Affinities of the family Sollasellidae (Porifera, Demospongiae). I. Morphological evidence. *Contributions to Zoology* 75: 133-144.
- Swofford DL. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts: Sinauer Associates.

Received: 16 October 2006 Accepted: 13 April 2007