60 research outputs found

    CE-MS for Proteomics and Intact Protein Analysis

    Get PDF

    Development of a surface plasmon resonance sensor for coupling to capillary electrophoresis allowing affinity assessment of protein mixture components

    Get PDF
    Surface plasmon resonance (SPR) currently is the major platform to study protein–protein interactions, but it lacks the selectivity to distinguish between binding components within one sample. Capillary electrophoresis (CE) can provide efficient separation of intact proteins under near-physiological conditions. We have hyphenated CE with SPR to achieve affinity assessment of mixture components. A microfluidic flow cell allowing straightforward coupling of CE and SPR was developed. Initial testing with non-interacting dyes showed good performance using a flow-cell channel volume of 100 nL until the detection point. Appropriate closing of the CE electric circuit was achieved using the SPR gold-sensor as grounding electrode. Division of the (bio)sensor into an electrode part (providing grounding) and a detection part (bearing the affinity surface) was crucial to avoid disturbance of the SPR signal by the CE voltage. This approach permitted CE separation and binding assessment for separation voltages up to 30 kV. Human serum albumin (HSA) or aprotinin were immobilized on carboxymethyldextran hydrogel-coated gold sensors and target proteins (anti-HSA, and trypsin and α-chymotrypsin, respectively) were analyzed. Efficient CE separation of the intact protein analytes was accomplished under native conditions by employing neutral and positively-charged capillary coatings. Selective binding of separated proteins to the target surface could be monitored by SPR down to 2 ng of injected protein. Regeneration of the biosensor surface was achieved by an on-line rising, allowing repeatable CE-SPR analyses of proteins with RSDs below 1% and 5% for migration time and signal intensity, respectively

    high resolution glycoform profiling of intact therapeutic proteins by hydrophilic interaction chromatography mass spectrometry

    Get PDF
    Abstract Glycosylation is considered a critical quality attribute of therapeutic proteins. Protein heterogeneity introduced by glycosylation includes differences in the nature, number and position of the glycans. Whereas analysis of released glycans and glycopeptides provides information about the composition and/or position of the glycan, intact glycoprotein analysis allows assignment of individual proteoforms and co-occurring modifications. Yet, resolving protein glycoforms at the intact level is challenging. We have explored the capacity of hydrophilic liquid chromatography-mass spectrometry (HILIC-MS) for assessing glycosylation patterns of intact pharmaceutical proteins by analyzing the complex glycoproteins interferon-beta-1a (rhIFN-β − 1a) and recombinant human erythropoietin (rhEPO). Efficient glycoform separation was achieved using a superficially-porous amide HILIC stationary phase and trifluoroacetic acid (TFA) as eluent additive. In-source collision-induced dissociation proved to be very useful to minimize protein-signal suppression effects by TFA. Direct injection of therapeutic proteins in aqueous formulation was possible without causing extra band dispersion, provided that the sample injection volume was not larger than 2 μL. HILIC-MS of rhIFN-β − 1a and rhEPO allowed the assignment of, respectively, 15 and 51 glycoform compositions, next to a variety of posttranslational modifications, such as succinimide, oxidation and N-terminal methionine-loss products. MS-based assignments showed that neutral glycan units significantly contributed to glycoform separation, whereas terminal sialic acids only had a marginal effect on HILIC retention. Comparisons of HILIC-MS with the selectivity provided by capillary electrophoresis-MS for the same glycoproteins, revealed a remarkable complementarity of the techniques. Finally it was demonstrated that by replacing TFA for difluoroacetic acid, peak resolution somewhat decreased, but rhEPO glycoforms with relative abundances below 1% could be detected by HILIC-MS, increasing the overall rhEPO glycoform coverage to 72

    Quality of Original and Biosimilar Epoetin Products

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Purpose To compare the quality of therapeutic erythropoietin (EPO) products, including two biosimilars, with respect to content, aggregation, isoform profile and potency. Methods Two original products, Eprex (epoetin alfa) and Dynepo (epoetin delta), and two biosimilar products, Binocrit (epoetin alfa) and Retacrit (epoetin zeta), were compared using (1) high performance size exclusion chromatography, (2) ELISA, (3) SDS-PAGE, (4) capillary zone electrophoresis and (5) in-vivo potency. Results Tested EPO products differed in content, isoform composition, and potency. Conclusion Of the tested products, the biosimilars have the same or even better quality as the originals. Especially, the potency of originals may significantly differ from the value on the label

    NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods

    Get PDF
    Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submit- Avenue, Silver Spring, Maryland 20993; 22Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia; 23Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacˇ ic´ a 1, 10 000 Zagreb, Croatia; 24Department of Chemistry, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303; 25glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany; 26Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada; 27Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739–8530 Japan; 28ImmunoGen, 830 Winter Street, Waltham, Massachusetts 02451; 29Department of Medical Physiology, Jagiellonian University Medical College, ul. Michalowskiego 12, 31–126 Krakow, Poland; 30Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore, Maryland 21287; 31Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704; 32Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363–883 Korea (South); 33Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363–700, Korea (South); 34Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; 35Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom; 36Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia; 37Proteomics, Central European Institute for Technology, Masaryk University, Kamenice 5, A26, 625 00 BRNO, Czech Republic; 38Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; 39Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; 40AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom; 41Merck, 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033; 42Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103; 43MS Bioworks, LLC, 3950 Varsity Drive Ann Arbor, Michigan 48108; 44MSD, Molenstraat 110, 5342 CC Oss, The Netherlands; 45Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5–1 Higashiyama, Myodaiji, Okazaki 444–8787 Japan; 46Graduate School of Pharmaceutical Sciences, Nagoya City University, 3–1 Tanabe-dori, Mizuhoku, Nagoya 467–8603 Japan; 47Medical & Biological Laboratories Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464–0858 Japan; 48National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom; 49Division of Biological Chemistry & Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158–8501 Japan; 50New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938; 51New York University, 100 Washington Square East New York City, New York 10003; 52Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; 53GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; 54Department of Chemistry, North Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695; 55Pantheon, 201 College Road East Princeton, New Jersey 08540; 56Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810; 57Proteodynamics, ZI La Varenne 20–22 rue Henri et Gilberte Goudier 63200 RIOM, France; 58ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545; 59Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan; 60Children’s GMP LLC, St. Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105; 61Sumitomo Bakelite Co., Ltd., 1–5 Muromati 1-Chome, Nishiku, Kobe, 651–2241 Japan; 62Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands; 63Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139; 64Department of Chemistry and Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, Texas 79409; 65Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California 94085; 66United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India; 67Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 68Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 69Department of Chemistry, University of California, One Shields Ave, Davis, California 95616; 70Horva´ th Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; 71Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary; 72Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711; 73Proteomics Core Facility, University of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden; 74Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden; 75Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg, Sweden; 76Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany; 77Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; 78Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France; 79Natural and Medical Sciences Institute, University of Tu¨ bingen, Markwiesenstrae 55, 72770 Reutlingen, Germany; 80Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 81Division of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; 82Department of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757; 83Zoetis, 333 Portage St. Kalamazoo, Michigan 49007 Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license. Received July 24, 2019, and in revised form, August 26, 2019 Published, MCP Papers in Press, October 7, 2019, DOI 10.1074/mcp.RA119.001677 ER: NISTmAb Glycosylation Interlaboratory Study 12 Molecular & Cellular Proteomics 19.1 Downloaded from https://www.mcponline.org by guest on January 20, 2020 ted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide communityderived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods. Molecular & Cellular Proteomics 19: 11–30, 2020. DOI: 10.1074/mcp.RA119.001677.L

    Online Affinity Assessment and Immunoaffinity Sample Pretreatment in Capillary Electrophoresis-Mass Spectrometry

    No full text
    Capillary electrophoresis (CE) has emerged as a very useful technique for the analysis of a variety of components ranging from small ions to large biomolecules. CE provides efficient separations and short analysis times, and allows compound analysis under near-physiological conditions. In the early 1990s of the last century the capability of CE to assess biomolecular affinity interactions was demonstrated and coined affinity capillary electrophoresis (ACE). In the same time, the use of affinity materials for selective online extraction of compounds before CE analysis was established. This immunoaffinity (IA) CE approach aims for highly specific isolation and preconcentration of target analytes from a biological matrix. Currently, both ACE and IA-CE have developed into proven analytical approaches. Over the last two decades, CE coupled to mass spectrometry (MS) has been demonstrated to be a powerful hyphenated technique, combining the high separation efficiency of CE with the selectivity of MS. MS has also been introduced as a detection technique for both ACE and IA-CE. This chapter provides an overview of the developments and applications in ACE-MS and IA-CE-MS. First, the basic aspects of CE, ACE, and IA-CE are introduced. Subsequently, the hyphenation of CE and MS detection is treated, specifically highlighting aspects that are important for affinity determinations. The setup and performance of reported ACE-MS and IA-CE-MS methods are treated systematically and orderly tables summarizing practical aspects of each method are provided. The application of ACE-MS and IA-CE-MS is outlined treating typical examples, such as peptide library screening, study of protein-ligand interactions, and bioanalysis of peptides and proteins

    Capillary zone electrophoresis-mass spectrometry of intact proteins

    No full text
    corecore