11,185 research outputs found

    The Dynamical Dipole Mode in Fusion Reactions with Exotic Nuclear Beams

    Full text link
    We report the properties of the prompt dipole radiation, produced via a collective bremsstrahlung mechanism, in fusion reactions with exotic beams. We show that the gamma yield is sensitive to the density dependence of the symmetry energy below/around saturation. Moreover we find that the angular distribution of the emitted photons from such fast collective mode can represent a sensitive probe of its excitation mechanism and of fusion dynamics in the entrance channel.Comment: 5 pages, 3 figures, to appear in Phys.Rev.

    Single WRW_R Production in e−e−e^-e^- Collisions at the NLC

    Full text link
    Single WRW_R production in e−e−e^-e^- collisions at the NLC can be used to probe the Majorana nature of the heavy neutrinos present in the Left-Right Symmetric Model below the kinematic threshold for their direct production. For colliders in the s=1−1.5\sqrt {s}=1-1.5 TeV range, typical cross sections of order 1−10fb1-10 fb are obtained, depending on the specific choice of model parameters. Backgrounds arising from Standard Model processes are shown to be small. This analysis greatly extends the kinematic range of previous studies wherein the production of an on-shell, like-sign pair of WRW_R's at the NLC was considered.Comment: 13pp, 3 figures (available on request), LaTex, SLAC-PUB-647

    Constraining the Symmetry Energy: A Journey in the Isospin Physics from Coulomb Barrier to Deconfinement

    Full text link
    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso-EOS effects are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a ``direct'' study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected ``neutron trapping'' effect. The importance of studying violent collisions with radioactive beams from low to relativistic energies is finally stressed.Comment: 15 pages, 5 figures, Int.Workshop on Nuclear Dynamics in Heavy Ion Reactions and Neutron Stars, Beijing Normal Univ. July 07, to appear in Int.Journ.Modern Physics E (2008

    Thermochemical conversion of microalgae: challenges and opportunities

    Get PDF
    Research in Advanced Biofuels steadily developed during recent years. A number of highly innovative technologies have been explored at various scale: among these, lignocellulosic ethanol and CTO (Crude Tall Oil)-biofuel technologies already achieved the early-commercial status, while hydrotreating of vegetable oils (HVO, or HEFA) can be considered today fully commercial. However, despite the level of innovation in each specific technological process under consideration, the feedstock maintains a central role in making a biofuel chain really sustainable. In this context, microalgae grown in salt-water and arid areas offers a considerable opportunity for advanced biofuel production: at the same time, however, they also represent a considerable challenge. Processing microalgae in an economic way into a viable and sustainable liquid biofuel (a low-cost mass-produced product) is not trivial. So far, the main attention has been given to cultivating the microorganism, accumulating lipids, extracting the oil, valorising co-products, and treating the algae oil into biodiesel (through esterification) or HEFA (Hydrotreated Esthers and Fatty Acids), this second one representing a very high quality biofuels, almost a drop-in fuel (suitable either for road transport or for aviation), which production exceed 2 Mt y-1 today. However, extracting the algae oil at low cost and at industrial scale is not yet a full industrial mature process, and the still limited market size of algae-to-biofuels makes difficult the development of industrial-scale systems. Nevertheless, another option can be considered, i.e. processing the whole algae into dedicated thermochemical reactors, thus approaching the downstream processing of algae in a completely different way from separation. The present work examines the possible routes for thermochemical conversion of microalgae, distinguishing between dry-processes (namely pyrolysis and gasification) and wet-processes (near critical water hydrothermal liquefaction and hydrothermal gasification). Typical expected elementary composition of major products is given. Main peculiarities of batch versus continuous processing are also discussed from an engineering point of view. Major engineering advantages and challenges in thermochemically conversion of algae are identified and discussed, in view of the production of a transport biofuel. Finally, future perspectives for each route are given in terms of current and expected technological readiness level

    On Spin-Glass Complexity

    Full text link
    We study the quenched complexity in spin-glass mean-field models satisfying the Becchi-Rouet-Stora-Tyutin supersymmetry. The outcome of such study, consistent with recent numerical results, allows, in principle, to conjecture the absence of any supersymmetric contribution to the complexity in the Sherrington-Kirkpatrick model. The same analysis can be applied to any model with a Full Replica Symmetry Breaking phase, e.g. the Ising pp-spin model below the Gardner temperature. The existence of different solutions, breaking the supersymmetry, is also discussed.Comment: 4 pages, 2 figures; Text changed in some parts, typos corrected, Refs. [17],[21] and [22] added, two Refs. remove

    Quantum Gravity Effects in Black Holes at the LHC

    Get PDF
    We study possible back-reaction and quantum gravity effects in the evaporation of black holes which could be produced at the LHC through a modification of the Hawking emission. The corrections are phenomenologically taken into account by employing a modified relation between the black hole mass and temperature. The usual assumption that black holes explode around 11 TeV is also released, and the evaporation process is extended to (possibly much) smaller final masses. We show that these effects could be observable for black holes produced with a relatively large mass and should therefore be taken into account when simulating micro-black hole events for the experiments planned at the LHC.Comment: 14 pages, 8 figures, extended version of hep-ph/0601243 with new analysis of final products, final version accepted for publication in J. Phys.

    Production and characterization of co-composted biochar and digestate from biomass anaerobic digestion

    Get PDF
    Biochar, produced through pyrolysis of lignocellulosic biomass, is attracting increasing interest as soil amendment thanks to its potential numerous benefits to agriculture, as well as its ability to sequester carbon in soil. Solid fraction of digestate from anaerobic digestion is a well-known N-rich substrate, most often composted in large and small agro-industrial plants. Co- composting biochar and digestate has the potential to synergistically increase the agronomic value of both components: however, it needs further process and on-field research. The present research work reports on the experimental tests on producing biochar and co-composting various biochar amounts with digestate from biomass anaerobic digestion (product here named COMBI). Biochar was produced by feeding wood chips from chestnut to an innovative oxidative reactor. In order to evaluate the quality of the products obtained by composting and co-composting, correlating this with the final biochar rate in the material, the net organic matter yield, the humified organic matter, the compliance with the European Compost Network Quality Assurance Scheme (ECN-QAS) limits for inorganic pollutants, and the product stabilization and sanitization indexes were investigated. The 11.2% w/w d.b. biochar rate in the initial blend (19.8% w/w d.b final concentration in the co-composted products) offered the best performances and is recommended for further investigation. Additional benefits from co-composting were also assessed, as the reduced dust load that favors safety and health during logistics and use

    Bulk Majorons at Colliders

    Get PDF
    Lepton number violation may arise via the spontaneous breakdown of a global symmetry. In extra dimensions, spontaneous lepton number violation in the bulk implies the existence of a Goldstone boson, the majoron J^(0), as well as an accompanying tower of Kaluza-Klein (KK) excitations, J^(n). Even if the zero-mode majoron is very weakly interacting, so that detection in low-energy processes is difficult, the sum over the tower of KK modes may partially compensate in processes of relevance at high-energy colliders. Here we consider the inclusive differential and total cross sections for e^- e^- --> W^- W^- J, where J represents a sum over KK modes. We show that allowed parameter choices exist for which this process may be accessible to a TeV-scale electron collider.Comment: 11 pages LaTeX, 3 eps figures (references added

    Retromode imaging modality of epiretinal membranes

    Get PDF
    (1) Purpose: To determine the characteristics of macular epiretinal membranes (ERM) using non-invasive retromode imaging (RMI) and to compare retromode images with those acquired via fundus autofluorescence (FAF) and fundus photography. (2) Methods: Prospective observational case-series study including patients with macular ERM with no other ocular disease affecting their morphology and/or imaging quality. We compared RMI, FAF and fundus photography features by cropping and overlapping images to obtain topographic correspondence. (3) Results: In total, 21 eyes (21 patients) affected by ERM were included in this study. The mean area of retinal folds detected by RMI was significantly higher than that detected by FAF (11.85 ± 3.92 mm2 and 5.67 ± 2.15 mm2, respectively, p < 0.05) and similar to that revealed by fundus photography (11.85 ± 3.92 mm2 and 10.58 ± 3.45 mm2, respectively, p = 0.277). (4) Conclusions: RMI appears to be a useful tool in the evaluation of ERMs. It allows for an accurate visualization of the real extension of the retinal folds and provides a precise structural assessment of the macula before surgery. Clinicians should be aware of RMI's advantages and should be able to use them to warrant a wide range of information and, thus, a more personalized therapeutic approach
    • …
    corecore