261 research outputs found

    The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation

    Get PDF
    Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y–dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferatio

    Aqueous phase reforming of lignin-rich hydrothermal liquefaction by-products: a study on catalyst deactivation

    Get PDF
    The water fraction derived from the hydrothermal liquefaction of a lignin-rich feedstock was subjected to aqueous phase reforming to produce hydrogen. Deactivation of the catalyst was observed, and it was ascribed to fouling phenomena caused by phenolic oligomers. Simple aromatics like guaiacol and phenol, as well as in-organics, were proved not to be the cause of the deactivation thanks to the use of a multi-component synthetic mixture. The influence of using activated carbon as a pretreatment was studied, leading to a strong improvement of the performance when it was carried out at high temperature. The extent of deactivation was assessed using aqueous phase reforming of glycolic acid as a model reaction test. The results were found to be correlated with the surface area of the catalyst. A thermal regeneration in inert conditions was evaluated as a mode of catalyst regeneration. While the textural properties were partially recovered, the performance of the catalyst only slightly improved. A spectroscopic analysis of the solids in the aqueous solution was carried out, highlighting the structural similarities between their nature and the lignin residue. The results obtained in this study helped to enlarge the knowledge on the aqueous phase reforming of real complex mixtures, looking at indicators of paramount importance for a possible industrial application such as the stability of the catalyst

    Lab-scale pyrolysis and hydrothermal carbonization of biomass digestate: Characterization of solid products

    Get PDF
    The aim of the present study is to investigate the production of biochar from anaerobic digestion (AD) digestate. Re-Cord selected digestate from real and representative (regarding the scale and the process technology) anaerobic digestion plant. Please click on the file below for full content of the abstract

    Physical interaction with human tumor-derived p53 mutants inhibits p63 activities

    Get PDF
    The p53 tumor suppressor gene is the most frequent target for genetic alterations in human cancers, whereas the recently discovered homologues p73 and p63 are rarely mutated. We and others have previously reported that human tumor-derived p53 mutants can engage in a physical association with different isoforms of p73, inhibiting their transcriptional activity. Here, we report that human tumor-derived p53 mutants can associate in vitro and in vivo with p63 through their respective core domains. We show that the interaction with mutant p53 impairs in vitro and in vivo sequence-specific DNA binding of p63 and consequently affects its transcriptional activity. We also report that in cells carrying endogenous mutant p53, such as T47D cells, p63 is unable to recruit some of its target gene promoters. Unlike wild-type p53, the binding to specific p53 mutants markedly counteracts p63-induced growth inhibition. This effect is, at least partially, mediated by the core domain of mutant p53. Thus, inactivation of p53 family members may contribute to the biological properties of specific p53 mutants in promoting tumorigenesis and in conferring selective survival advantage to cancer cells

    Aortic stenting in the growing sheep causes aortic endothelial dysfunction but not hypertension: Clinical implications for coarctation repair

    Get PDF
    Stent implantation is the treatment of choice for adolescents and adults with aortic coarctation (CoAo). Despite excellent short-term results, 20%-40% of the patients develop arterial hypertension later in life, which was attributed to inappropriate response of the aortic baroreceptors to increased stiffness of the ascending aorta (ASAO), either congenital or induced by CoAo repair. In particular, it has been hypothesized that stent itself may cause or sustain hypertension. Therefore, we aimed to study the hemodynamic and structural impact following stent implantation in the normal aorta of a growing animal

    Identification of trypanosomatids and blood feeding preferences of phlebotomine sand fly species common in Sicily, Southern Italy

    Get PDF
    In this study, the presence of Leishmania DNA and blood feeding sources in phlebotomine sand fly species commonly present in Sicily were investigated. A total of 1,866 female sand flies including 176 blood fed specimens were sampled over two seasons in five selected sites in Sicily (southern Italy). Sergentomyia minuta (n = 1,264) and Phlebotomus perniciousus (n = 594) were the most abundant species at all the sites, while three other species from the genus Phlebotomus (i.e., P. sergenti n = 4, P. perfiliewi n = 3 and P. neglectus n = 1) were only sporadically captured. Twenty-eight out of the 1,866 (1.5%) sand flies tested positive for Leishmania spp. Leishmania tarentolae DNA was identified in 26 specimens of S. minuta, while the DNA of Leishmania donovani complex was detected in a single specimen each of S. minuta and P. perniciosus. Interestingly, seven S. minuta specimens (0.4%) tested positive for reptilian Trypanosoma sp. Blood sources were successfully identified in 108 out of 176 blood fed females. Twenty-seven out of 82 blood sources identified in fed females of P. perniciosus were represented by blood of wild rabbit, S. minuta mainly fed on humans (16/25), while the sole P. sergenti fed specimen took a blood meal on rat. Other vertebrate hosts including horse, goat, pig, dog, chicken, cow, cat and donkey were recognized as blood sources for P. perniciosus and S. minuta, and, surprisingly, no reptilian blood was identified in blood-fed S. minuta specimens. Results of this study agree with the well-known role of P. perniciosus as vector of L. infantum in the western Mediterranean; also, vector feeding preferences herein described support the hypothesis on the involvement of lagomorphs as sylvatic reservoirs of Leishmania. The detection of L. donovani complex in S. minuta, together with the anthropophilic feeding-behaviour herein observed, warrants further research to clarify the capacity of this species in the transmission of pathogens to humans and other animals.publishersversionpublishe

    Transcriptional activation of the miR-17-92 cluster is involved in the growth-promoting effects of MYB in human Ph-positive leukemia cells.

    Get PDF
    MicroRNAs, non-coding regulators of gene expression, are likely to function as important downstream effectors of many transcription factors including MYB. Optimal levels of MYB are required for transformation/maintenance of BCR-ABL-expressing cells. We investigated whether MYB silencing modulates microRNA expression in Philadelphia-positive (Ph+) leukemia cells and if MYB-regulated microRNAs are important for the MYB addiction of these cells. Thirty-five microRNAs were modulated by MYB silencing in lymphoid and erythromyeloid chronic myeloid leukemia-blast crisis BV173 and K562 cells; 15 of these were concordantly modulated in both lines. We focused on the miR-17-92 cluster because of its oncogenic role in tumors and found that: i) it is a direct MYB target; ii) it partially rescued the impaired proliferation and enhanced apoptosis of MYB-silenced BV173 cells. Moreover, we identified FRZB, a Wnt/β-catenin pathway inhibitor, as a novel target of the miR-17-92 cluster. High expression of MYB in blast cells from 2 Ph+leukemia patients correlated positively with the miR-17-92 cluster and inversely with FRZB. This expression pattern was also observed in a microarray dataset of 122 Ph+acute lymphoblastic leukemias. In vivo experiments in NOD scid gamma mice injected with BV173 cells confirmed that FRZB functions as a Wnt/β-catenin inhibitor even as they failed to demonstrate that this pathway is important for BV173-dependent leukemogenesis. These studies illustrate the global effects of MYB expression on the microRNAs profile of Ph+cells and supports the concept that the MYB addiction of these cells is, in part, caused by modulation of microRNA-regulated pathways affecting cell proliferation and survival. Copyright© 2019 Ferrata Storti Foundation

    Conceptual design and techno-economic assessment of coupled hydrothermal liquefaction and aqueous phase reforming of lignocellulosic residues

    Get PDF
    Hydrothermal liquefaction is a promising technology for producing renewable advanced biofuels. However, some weaknesses could undermine its large-scale application, such as the significant carbon loss in the aqueous phase (AP) and the necessity of biocrude upgrading. In order to deal with these challenges, in this work the techno-economic feasibility of coupling hydrothermal liquefaction (HTL) with aqueous phase reforming (APR) was evaluated. APR is a catalytic process able to convert water-dissolved oxygenates into a hydrogen-rich gas that can be used for biocrude upgrading. Two cases were proposed, based on different lignocellulosic feedstocks: corn stover (CS) and lignin-rich stream (LRS) from cellulosic ethanol production. HTL-APR plants operating with the same mass flow (3.6 t/h) at 10 wt% solid loading were herein evaluated, resulting in an input size of 20 MW (LRS) and 16.5 MW (CS). Based on experimental and literature data, the mass and energy balances were per- formed; subsequently, the main equipment was designed; finally, the capital and operating costs were evaluated. The analysis showed that the minimum selling prices for the biofuel (0% internal rate of return) were 1.23 (LRS) and 1.27 €/kg (CS). The heat exchangers accounted for most of the fixed capital investment, while electricity and feedstock had the highest impact on the operating costs. The implementation of APR was particularly profitable with CS, as it produced 107% of the hydrogen required for biocrude upgrading. In this case, APR was able to significantly reduce the H2 production cost (1.5 €/kg) making it a competitive technology compared to con- ventional electrolysis
    • …
    corecore