25 research outputs found

    Mode selection and phase locking of sidelobe-emitting semiconductor laser arrays via reflection coupling from an external narrow-bandwidth grating

    Get PDF
    A phase locked array design, utilizing direct reflection feedback between adjacent cavities by an external grating, is analyzed and proposed. The narrow grating reflection bandwidth causes longitudinal mode selection, while the array geometry causes transverse wavenumber selection through the coupling strength. As a result, only one among the free running cavity eigenmodes can couple effectively into a phase locked collective eigenmode. The coupled array mode is experiencing the high reflectivity of the grating and surpasses the low gain of the free running modes, that experience only a much lower reflectivity from the cavity edge antireflective coating. These results suggest that in-phase locking and single mode operation can be achieved simultaneously through the use of an external narrow-bandwidth grating

    Phase-Induced (In)-Stability in Coupled Parametric Oscillators

    Full text link
    We report results on a model of two coupled oscillators that undergo periodic parametric modulations with a phase difference θ\theta. Being to a large extent analytically solvable, the model reveals a rich θ\theta dependence of the regions of parametric resonance. In particular, the intuitive notion that anti-phase modulations are less prone to parametric resonance is confirmed for sufficiently large coupling and damping. We also compare our results to a recently reported mean field model of collective parametric instability, showing that the two-oscillator model can capture much of the qualitative behavior of the infinite system.Comment: 19 pages, 8 figures; a version with better quality figures can be found in http://hypatia.ucsd.edu/~mauro/English/publications.htm

    Ion radial transport induced by ICRF waves in tokamaks

    Get PDF
    The wave-induced fluxes of energetic-trapped ions during ICRF heating of tokamak plasmas are calculated using quasilinear equations. A simple single particle model of this transport mechanism is also given. Both a convective flux proportional to k/sub phi/vertical bar E/sub +/vertical bar/sup 2/ and a diffusive flux proportional to k/sub phi//sup 2/vertical bar E/sub +/vertical bar/sup 2/ are found. Here, k/sub phi/ is the toroidal wave number and E/sub +/ is the left-hand polarized wave field. The convective flux may become significant for large k/sub phi/ if the wave spectrum is asymmetric in k/sub phi/. But for the conditions of most previous experiments, these calculations indicate that radial transport driven directly by the ICRF wave is unimportant

    Phase stability theory of Bloch eigenstates in active photonic lattices with coupled microlaser arrays

    No full text
    An generic model for the lattice dynamics of coupled microlaser arrays is employed for the lattice stability analysis. Nonlinear cross-cavity gain-coupling effects, characterizing active lattices, are included via the gain dependence on carrier depletion and cross-cavity hole burning. Passive near neighbor interactions (inter-cavity absorption and mirror reflection interference) are also included. The introduction of lattice-orthogonal modes simplifies the derivation of the coupled rate equations. The interaction phase among sites exhibits spontaneous long range “crystallization" into periodic Bloch states whereby the cavity radiation envelopes behave as laser “macro-atoms". The sign of the coupling coefficients as a function of geometry determines in- vs. out-of-phase locking and has practical implications for array design. Emphasis is placed on the stability analysis of Bloch states by including earlier omitted [1] effects of phase perturbations. The importance of the linewidth factor ι is uncovered: unconditional stability results for ι1\iota \leq 1, otherwise a stability threshold exists for the coupling strength among sites. Choice of low ι gain material permits phase stability with high coupling strength, beneficial in overcoming manufacturing variations among array cavity parameters

    Theory and Modeling in Support of Tether

    No full text
    This final report summarizes the work performed by SAIC's Applied Physics Operation on the modeling and support of Tethered Satellite System missions (TSS-1 and TSS-1R). The SAIC team, known to be Theory and Modeling in Support of Tether (TMST) investigation, was one of the original twelve teams selected in July, 1985 for the first TSS mission. The accomplishments described in this report cover the period December 19, 1985 to September 31, 1999 and are the result of a continuous effort aimed at supporting the TSS missions in the following major areas. During the contract period, the SAIC's TMST investigation acted to: Participate in the planning and the execution on both of the TSS missions; Provide scientific understanding on the issues involved in the electrodynamic tether system operation prior to the TSS missions; Predict ionospheric conditions encountered during the re-flight mission (TSS-lR) based on realtime global ionosounde data; Perform post mission analyses to enhance our understanding on the TSS results. Specifically, we have 1) constructed and improved current collection models and enhanced our understanding on the current-voltage data; 2) investigated the effects of neutral gas in the current collection processes; 3) conducted laboratory experiments to study the discharge phenomena during and after tether-break; and 4) perform numerical simulations to understand data collected by plasma instruments SPES onboard the TSS satellite; Design and produce multi-media CD that highlights TSS mission achievements and convey the knowledge of the tether technology to the general public. Along with discussions of this work, a list of publications and presentations derived from the TMST investigation spanning the reporting period is compiled
    corecore