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Mode selection and phase locking of sidelobe-emitting semiconductor
laser arrays via reflection coupling from an external narrow-bandwidth
grating

S. Riyopoulos,1,a� G. Venus,2 and L. Glebov2

1Science Applications International Corporation, McLean, Virginia 22102, USA
2CREOL, University of Central Florida, Orlando, Florida 32816, USA

�Received 3 October 2007; accepted 29 March 2008; published online 9 June 2008�

A phase locked array design, utilizing direct reflection feedback between adjacent cavities by an
external grating, is analyzed and proposed. The narrow grating reflection bandwidth causes
longitudinal mode selection, while the array geometry causes transverse wavenumber selection
through the coupling strength. As a result, only one among the free running cavity eigenmodes can
couple effectively into a phase locked collective eigenmode. The coupled array mode is
experiencing the high reflectivity of the grating and surpasses the low gain of the free running
modes, that experience only a much lower reflectivity from the cavity edge antireflective coating.
These results suggest that in-phase locking and single mode operation can be achieved
simultaneously through the use of an external narrow-bandwidth grating. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2936970�

I. INTRODUCTION

Coherent phase locking of semiconductor laser arrays1–3

is attractive for high power applications ranging from mate-
rial processing to free space communications to coherent
beam combining. Single mode operation of each laser cavity
is necessary for achieving phase locking and phase control.
Although several coupled array approaches have been pro-
posed so far, including evanescent coupling, antiguided �pho-
tonic mode� arrays,4 and external feedback synchronization,5

maintaining phase coherence and single mode a high power
levels remains a challenge.

The recent advent of Bragg gratings recorded in photo-
thermorefractive �PTR� glass allows extremely small reflec-
tion bandwidth �KR, smaller than the longitudinal mode
separation in the cavity �kz=� /L, through a combination of
very low index contrast �n /n�10−4 �for small �KR� with a
large number of quarter-wavelength pairs �103−104 �for
high reflectivity� and extremely low absorption. That enables
a new approach to phase locking based on reflection cou-
pling between sidelobe emitting broad area lasers inside a
shared external cavity. The first experimental demonstration
of single-mode phase locking of two multimode laser diodes
was described in Ref. 6. However, the feasibility of this ap-
proach for multicavity laser arrays is not obvious and, there-
fore, is the goal of this work.

The concept is schematically illustrated in Fig. 1. Broad
area multistripe lasers emit far-field patterns forming side-
lobes at angles �=tan−1�kx /kz�, where kx corresponds to some
transverse mode wavenumber. The output of each cavity is
Bragg reflected by the external grating directly into the
neighboring cavities. The low reflectivity from the antireflec-
tion coating �AR� at each cavity output causes very high
lasing threshold for free running �uncoupled by the grating�

modes. Thus, the uncoupled free running modes remain be-
low lasing threshold for usual operating currents. Only the
grating-coupled collective array modes, that receive much
higher reflectivity from the Bragg mirror, are raised above
threshold for the same current. Since the narrow PTR band-
width favors only one longitudinal value kz for reflection,
and since the reflection geometry selects one sidelobe angle
� for coupling, meaning a single transverse wavenumber kx

=ko sin �, only one among the free-running cavity modes
��kz ,kx� become coupled and thus raised above the lasing
threshold. In other words, the proposed arrangement aims at
concurrent achievement of phase locking and single mode
control. Suppression of the free running vertical mode �=0,
which stands out in gain due to direct reflection from the
PTR, can be achieved either via selection of the material gain
regime so that g���kz ,kx=0���0�g���kz ,kx�0��, or by
tailoring a vertical antiresonant interference between the AR
and the PTR.

Given the narrow bandwidth, thermal wavenumber drifts
due to grating material expansion can be important for op-
eration. The achieved low PTR glass absorption coefficient

a�Electronic mail: spilios.riyopouolos@saic.com.

FIG. 1. �Color online� Schematic illustration of a sidelobe-emitting semi-
conductor laser array coupled via direct reflection from a narrow bandwidth
external grating.
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�10−3 cm−1, however, minimizes such effects. Computa-
tions yield a total expansion of 0.5 �m for a typical grating
thicknesses 2.5–3.0 mm, corresponding to 7000–9000 grat-
ing periods for n�1.5 and a free space wavelength �1 �m.
The shift in the grating period and the reflection band center
is then of the order 10−4 �m, too small to be of practical
importance. A spatially nonuniform expansion of the total
grating thickness, in response to a Gaussian beam power
distribution, could be more significant than a uniform fre-
quency shift, yet the corresponding lensing effects are still
relatively small.

The rest of this paper is organized as follows. The gen-
eral coupled-cavity rate equations for an edge emitting semi-
conductor laser array are obtained and discussed in Sec. II.
The coupling coefficients for sidelobe emitting broad-stripe
lasers are derived in detail in Sec. III due to their importance
in determining the complex coupling strength among cavi-
ties. The distributed reflection from a thick, low-index-
contrast grating is treated in detail in Sec. IV in order to
determine the effective reflection and diffraction lengths
which are longer than the grating-cavity separation. The deri-
vation of the feedback-coupled collective array modes and
the discussion of the threshold gain and mode control, the
main result of this work, appear in Sec. V. Vertical mode
control is discussed in Sec. VI.

II. COUPLED-CAVITY RATE EQUATIONS

We assume single polarization cavity modes with pro-
files of the form

E = E�z,t�U�x,y�eikxx+ikzz−i�tŷ , �1�

where kx, kz carry the “fast phase” variation and Unp�r� with
r= �x ,y� is the cold-cavity �zero gain� eigenmode profile, so-
lution of

�2Unp�r� + ��	�r�
�2

c2 + 	o
np
2 �Unp�r� = 0. �2�

Here 
np
2 	�2 /c2−kn

2−kp
2 carries the wavenumber quantiza-

tion k= �kx ,kz�= �n� /a , p� /L� for a slab waveguide of
length L with complex dielectric 	o extending between 
x

�a , 
y
�h , 
z
�L and �	�r� signifies index profile modifi-
cation to thermal effects. The evolution of the slowly varying
envelope E�z , t� under the complex gain influence is given by

� �

�t
+ vg

�

�z
�E = − i4�

����
���	�

��

E 	 g���E , �3�

where � is the complex material susceptibility, the complex
material gain is defined by g=g�+ ig�	−i4�����
����	� /���−1, the group velocity is given by vg=d� /dkz,
and ���	� /�� is the usual factor relating energy density to
the amplitude in dispersive materials. For weak dispersion
d	 /d��1, one has vg�vp and ���	� /���	.

Without loss of generality we consider a 1N array
with cavity separation �pitch� d�2a along x. For the mo-
ment we assume identical cold cavity parameters, imposing
invariance under lateral displacements by an array period d.
Thus, the array gain and reflectivity profiles are given by

g̃�r�=g�+ j=0
N go�g�r− jd� and R̃�r�=R�+ j=0

N Rc�m�r− jd�,
where g�, R� are constant “floor” values between the lasing
cavity regions. To simplify the computation we assume flat
profiles �g,m�r− jd�=1 for 
x− jd
�a , 
y
�h and �g,m�r�=0
otherwise, where the cavity half width a�d /2. We also as-
sume that cavity coupling involves identical mode numbers
with identical profiles Unp=U, barring accidental frequency
degeneracy. Thus, we consider array mode envelopes given
by a superposition of cavity eigenmode envelopes

Ẽ = 
j=0

N

E j�z,t�U�r − jd� = 
j=0

N

E j�z,t�Uj�r� , �4�

using the notation Uj�r�	U�r− jd�. In subsequent calcula-
tions one can simply write, evoking periodicity,
Uj�1�r�Uj�r�=U1�1�r�U1�r�=U�r�d�U�r�, etc.

Substituting the collective envelope Eq. �4� inside Eq.
�3�, taking the projection with the jth cavity profile Uj�r�,
integrating over the array volume contained between the SL
cavity edges, and applying Stokes theorem converting vol-
ume integrals into surface integrals, capturing the edge cav-
ity emitted flux and the intercavity reflected flux, yield a set
of coupled cavity envelope equations �Appendix A�,


j=i−1

j=i+1

Cij

�E j

�t
= vg�g�ij − �Mij + �Vij�E j . �5�

The reflection loss and grating feedback constants are given
via the power reflectance and transmittance as �=Tc /2L
= �1−Rc� /2L= �1− 
r
2� /2L, where R is the reflectance and r
is the amplitude reflectivity. The factor � /2 applies to the
amplitude growth rate since �Eo /�t= �1 /2���Eo

2 /�t�. For high
reflectance R=1−	 with 	�1, whereby 	�−ln R, one has
��1−R� /2L=	 /2L recovering the familiar result ��
−ln R /2L. We adopt the exact � ,� definitions below Eq. �5�
that are always valid and should be used for low R�1 val-
ues. Incidentally, the transmittance T=1− 
r
2� 
t
2 �Appen-
dix A�, so the reflectivity r is more convenient for expressing
cavity losses.

The earlier general coupling equations contain both near-
field coupling terms, due to fringe field overlap, and far-field
coupling due to reflection from the grating. The radiation
overlap between neighboring cavity evanescent fields is
Ci,i�1=�dr2Ui�r�Ui�1�r�. Only neighboring cavity coupling
is considered here j= i�1, though extension to arbitrary or-
der coupling is straightforward. The mode profiles are nor-
malized so that Cii=�dr2Ui

2�r�=1. The mode overlapping
with the same-cavity gain profile �confinement factor�
go�i

g�r� and the overlapping with the edge mirror losses pro-
file �o� j

m�r�, given, respectively, by

�ii =� dr2Ui
��r��i

g�r�Ui�r� ,

Mii =� dr2Ui
��r��i

m�r�Ui�r� , �6�

are referred to as the gain and mirror “confinement factors.”
The corresponding cross-cavity near-field gain coupling and
near-field reflection coupling, due to fringe-field overlap, are
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�i,i�1 =� dr2Ui
��r��i

g�r�Ui�1�r� ,

�7�

Mi,i�1 =� dr2Ui
��r��i

m�r�Ui�1�r� .

Finally, the far-field reflection overlap between the expanded
�diffracted� mode wavefront from cavity i�1 and the ith
cavity wavefront, Fig. 2, is given by

Vi,i�1 =� dr2Ui
��r;z = 0�Ui�1�r;z = 2l�

=� dr2U��r;0�Pz=2lU�r + d;0� , �8�

where P is the paraxial propagator along z distance
twice the grating separation l. Due to near-neighbor
coupling the coefficient matrices C= �Cij�, Y= ��ij�, M
= �Mij�, V= �Vij� are tridiagonal. Furthermore, array
periodicity impose �ii=�dr2Ui

��r��i
g�r�Ui�r�

=�dr2U��r− id��g�r− id�U�r− id�=�dr2U��r��g�r�U�r�=�11,
and �i,i�1=�dr2Ui

��r��i
g�r�Ui�1�r�=�dr2U��r− id��g�r

− id�U�r− �i�1�d�=�dr2U��r��g�r�U�r�d�=�12=�21, etc.,
hence, all diagonal elements are equal, and symmetric off-
diagonal elements are also equal,

Y = ��11 �12 ¯

�12 �11 �12

¯ �12 �11
� ,

M = �M11 M12 ¯

M12 M11 M12

¯ M12 M11
� ,

V = � 0 V12 ¯

V12 0 V12

¯ V12 0
� . �9�

In matrix form

C �

�t
E = vg�gY − �M + �V�E . �10�

The presence of nondiagonal coupling terms on the left-hand
side time derivatives has the following meaning: any gain or
loss from the right-hand side �rhs� of Eq. �10� is shared
among neighbor cavities in proportion to the fringe field
overlapping �since cavity eigenmodes are not “lattice or-
thogonal”�. Multiplying both sides by C−1 diagonalizes the
left-hand side, yielding the final form

�

�t
E = vg�gŶ − �M̂ + �V̂�E , �11�

where Ŷ=C−1Y, M̂=C−1M, and Ŷ=C−1Y. In fact, expres-
sion �11� can be arrived at from the beginning by introducing

a properly constructed lattice-orthogonal basis7,8 Û�r� satis-

fying �dr2Ûi�r�Ûj�r�=�ij, in place of the original Uj�r�.

III. SIDELOBE COUPLING

The effect of near-field evanescent coupling has been
extensively studied in Refs. 7 and 8 in association with
closely packed vertical-cavity surface-emitting lasers arrays.
In the considered sidelobe coupling scheme between edge
emitters, Fig. 1, the cavity pitch d is much larger than the
mode waist wo and the near-field overlap is exponentially
small and negligible compared to the far-field reflection cou-
pling �RG. Off-diagonal terms can be dropped from Y, M,
and C becomes the identity matrix I, whereby both Eqs. �10�
and �11� are reduced to

�

�t
E = vg�g�11I − �M11I + �V�E , �12�

where the diagonal elements �11, M11 are the cavity confine-
ment factors. The only intercavity coupling comes from the
�by definition off-diagonal� grating reflection matrix ele-
ments V. Next we proceed in evaluating the elements
Vj,j�1=V12 defined by Eq. �8�.

Using Cosine–Gauss–Hermite products as the most gen-
eral mode profiles for a stripe laser, following a rational simi-
lar to Refs. 2 and 3, the near field at the output z=0 is written
as

Umnp�x,y� = snp�y��umn
+ �x� + umn

− �x�� , �13�

snp�y� = B cos�kyy�, 
y
� h ,

snp�y� = B� exp�− ky�y�, 
y
� h ,

�14�

umn
� �x� = Cmn� 2

�wo
2�1/4

Hm��2x

wo
�e−x2/wo

2
e�iknx.

Above kx	kn=n� /a and ky =�	o�
2 /c2−kn

2−kp
2 are the trans-

verse wavenumbers along the cavity width 2a and cavity
height 2h, respectively, satisfying a slab-type dispersion
relation �np�kn ,kp�, where p labels the longitudinal
wavenumber kz=kp= p� /L. The Gauss–Hermite function
Hm���exp�−�2 /2�, with �	�2x /wo, where the Gaussian
waist is given by wo=�a� /2��2��	o /	o�1/4 and includes

FIG. 2. �Color online� Schematic illustration of the overlapping between a
cavity mode Gaussian envelope and the reflected off the grating, expanded
�diffracted� sidelobe emanating from the cavity on the left. The offset be-
tween the center of the reflected sidelobe and the target cavity center is �n

=d−2l sin �n, with d as the array pitch and �n as the sidelobe angle. The
target and source cavity coordinates, respectively, x, x�, are related by x�
=x+d.
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the effect of a parabolic index profiling �thermal lensing�,
�	�x�= �1 /2��	ox2 /a2 in Eq. �2�. This also modifies the final
dispersion into 	o�mnp

2 /c2−kn
2−kp

2 −ky
2=�	o�2m+1�.

The use of a collimating mirror with matched radius of
curvature and focal distance is expected to focus the radia-
tion in the “fast diffracting” y direction and minimize the
y-diffraction effects. We thus focus on the effects of the free
diffraction along the x axis during the round trip to the grat-
ing and into the adjacent cavity. For small transverse wave-
numbers k� /ko�1, the far field is given by the convolution
of the paraxial propagator with the output near field u�x ;z�
=�dx�u�x� ;z=0��iko /2�z exp�iko��x�−x�2 /2z��, where ko

=� /c. Using the generating function expansion for the
Hermite–Gaussian yields �Appendix B�,

umn
+ �x;z� = Cmn� 2

�W2�z�
�1/4

e−i�m+1/2���z�Hm

��2�x − z sin �n�
W�z�

�
e−�1+i�z/b����x − z sin �n�2/W2�z��e−iko�x2/2z�, �15�

where W2�z�=wo
2�1+z2 /b2� with b=kowo

2 /2 the diffraction
length, ��z�=tan−1 z /b, and Cmn is a normalization factor.
The far-field expression umn

− �x ;z� follows by sin �n→
−sin �n. Under the paraxial approximation �n�1, the argu-
ment x�z sin �n�x cos �n�z sin �n is the x� coordinate in
a rotated frame with z� aligned with ��n. Hence, a Cosine–
Gauss–Hermite mode diffracts as a pure Gauss–Hermite
along a propagation axis rotated by �n. For the fundamental
Gaussian mode m=0, the radiation peaks at x�z sin �n=0
forming two symmetric sidelobes at angles ��n

	sin−1��kx /ko�=sin−1��kn /ko� relative to the z direction
with ko=� /c as the vacuum wavenumber. The angular diver-
gence of each sidelobe around �n, defined at the 1 /e folding
angle, is given by ��W�z� /z→wo /b=�o /�wo.

The coupling coefficient due to the reflected far-field in-
cidence onto the adjacent cavity near field is written as
R12V12, where R12=TcRGTc is the product of the grating re-
flection coefficient RG times two transmissions through the
AR coatings with reflection coefficient Rc. The factor V12

gives the overlap of the diffracted far field envelope with the
near field of the right adjacent cavity. Because the cavity
field is a standing wave between eikxx and e−ikxx the right
sidelobe overlap with the target cavity has two terms

V12 = Vmn
++ + Vmn

+− . �16�

Taking into account the cavity center separation Vmn
��

	�dr2umn
� ��x ;z=0�umn

� �x+d ;z=2l�. The left sidelobe projec-
tion onto the left adjacent cavity follows directly from Vmn

−−

= �Vmn
++��, Vmn

−+ = �Vmn
+−��. The values V0n

��, V0n
�� for the funda-

mental Cosine–Gaussian m=0 are computed in Appendix C.
The interference V+− between opposite �kn sidelobes is ex-

ponentially smaller by e−4b2 sin2 �n/w0
2�1+���1 and can be ne-

glected. The sidelobe coupling strength �1−Rc
2�RGV12 enters

the coupled cavity Eqs. �12� in the form �V12� where �	�1
−Rc

2�
RG
 /2L and the reflection phase shift � at the grating is
absorbed inside V12� ��1 /4�V++ei�,

V12 =
1

2� 4

4 + �2l/b�2�1/4

exp�−
2�2

wo
2�4 + �2l/b�2��exp�i�� − ��2l�

+
1

2
��l� +

koXn�Xn + 2��
2�2l�

−
�2l/b��2

wo
2�4 + �2l/b�2��� .

�17�

For on-center incidence �=0, the coupling scales as �4 / �4
+ �2l /b�2��1/4. For reflection path lengths shorter than the dif-
fraction length 2l�b, the expansion in the reflected mode
spot size is small and the overlap factor near 50% �half the
power in each sidelobe�. For significant coupling the diffrac-
tion spread in the far field cannot be large, requiring round
trip lengths 2l�b. This is why the full paraxial �Fresnel�
propagator was employed instead of the far-field �Fraun-
hofer� limit l /b�1.

Due to the distributed, multilayer interaction with the

grating an effective distance l̂ must replace the nominal dis-
tance l �the distance of the leading grating edge� inside the
coupling formulae. It is shown next that separate effective
distances apply for finding the beam path and the beam spot-
size expansion.

IV. EFFECTIVE GRATING DISTANCE DUE TO
DISTRIBUTED REFLECTION

Distributed reflection over the long penetration depth in-
side the thick, low-index contrast, Bragg grating causes sig-
nificant changes in the reflected wavefront. The total re-
flected radiation at the leading grating edge z= l is a
superposition of partial wavefronts dE�z� reflected from dif-
ferent depths z̄	z− l within the grating thickness G. Due to
different traveled distances 2z̄, wavefronts reflected off
deeper layers have increasingly expanded �diffracted� 1 /e
widths W�l+ z̄�, and laterally displaced centers by x
=2z̄ sin �, as shown in Fig. 3�a�. The strength of each re-
flected wavefront equals the reflected fraction dE�z̄� from the
depth z̄. For gratings with low index contrast the coupled
wave theory offers a very good approximation for the inten-
sity inside the grating dE�z̄�=dz̄
Eoe−
z̄, where 
 is related
to the reflectance R by 
=−ln R /2G and G is the grating
length. The superposition of partially reflected wavefronts,
diffracted along the optical paths 2z̄ sin ��, yields the re-
flected wavefront at the leading edge z= l �Appendix D�,

E��x,y ;l� =�n2kb

�
�

0

G

dz̄


exp�− 
z̄�
1

�nl + z̄� + inb

exp�ink
�x − 2z̄ sin �x/n�2 + �y − 2z̄ sin �y/n�2

2��nl + z̄� + inb� �
�18�

�generalized for oblique incidence in both x and y�. Here
sin ��=� /n is the diffraction angle inside the grating of
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average index n= �n1g1+n2g2� /2�g1+g2�; the pair thick-
nesses g1, g2 are defined so that k�n1g1+n2g2�=� at center
bandwidth. Expression �18� is exact within the paraxial
framework but can be computed only numerically. Figure
3�b� plots the reflected electric field profile, the real part of
Eq. �18�, for various incidence angles, by a grating of thick-
ness G�2440 �m placed at distance l=4000 �m. �For �o

=0.980 �m and average refraction index n̄=1.488 G con-
tains about 7400 quarter-wavelength pairs. A pair index con-
trast �n=0.000 433 yields vertical reflectance of 0.9955.�
There is a lateral shift of the beam axis �peak� due to oblique
incidence, and a beam spreading, caused by diffraction dur-
ing propagation through the grating.

The lateral displacement in the beam axis �x is calcu-
lated from the location of the maximum 
�RE� /�x
x=�x

=0,
leading to an integral equation solved numerically �Appendix
D�. One can now define an effective penetration length �lr�
inside the grating via �x=2�lr� sin ��=2��lr� /n�sin �, so that
the axis shift from the distributed interaction equals to a shift
from reflection by a mirror at depth z̄=�lr�, corresponding to
free-space depth �lr=�lr� /n �Fig. 3�c��. The shift �x and free-
space penetration depth �lr are plotted versus the incidence
angle � for various values of the reflectance 
 in Figs. 4�a�
and 4�b�, respectively. The curves �lr�� ,
� remain close to
the energy penetration distance �le=1 /2
. This is not sur-
prising, since partial contributions are weighted by the re-
flected fraction and most power is reflected from within the
energy penetration depth, Fig. 4�b�. Hence, regarding the
beam propagation path, one may treat reflection by the grat-
ing as reflection by a mirror located at an effective distance

l̂= l+�lr� l+�le. Plots of effective reflection-to-actual grat-

ing distance l̂ / l are given in Fig. 4�c�.
Analytic estimates of the expansion of the beam are pos-

sible by taking the mean value of the radiation spot size,
since for near-Gaussian beams the 1 /e width W equals twice
the root-mean-square �rms� spot size. Taking the spatial av-
erage around the shifted axis �Wx

2�=2��x−�x�2� , �Wy
2�=2��y

−�y�2� over radiation power yields the spot size in each di-
rection �Appendix D�,

FIG. 3. �Color online� �a� Schematic illustration of distributed reflection
through a DBR, showing the partial reflected wavefronts arriving back at the
leading edge z= l. �b� The reflected field profile E��x� for various incidence
angles �, showing a shift in the peak location �x and a spread in the spot
size W�. Incident beam waist wo=60 �m, grating thickness G=2440 �m,
distance l=4000 �m, and reflection constant 
=0.0011 corresponding to
reflectance R=0.995. �c� Relation between material reflection depth �lr�,

free-space effective reflection depth �lr and effective grating distance l̂.

FIG. 4. Beam axis shift during distributed reflection from a grating of thick-
ness G=2440 �m. �a� Shift �x of the reflected beam axis �at the grating’s
leading edge z= l� vs incidence angle �, for various reflection constants
values as marked, and same other parameters as Fig. 3. �b� Ratio of effective
penetration depth �lr to the grating thickness G vs reflection constant 
, for
various incidence angles �. Thick gray line marks the energy penetration
depth �le /G=1 /2
G. �c� Ratio of effective reflection distance to the grating

edge distance l̂ / l. Thick gray line marks the relative energy penetration

distance l̂ / l=1+1 /2
l. For the chosen grating the plotted range of 
 yields
reflectance values R�
� from 0.946 to 0.995.
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�Wx,y
2 � =

1

R
�

0

G

dz̄2
 exp�− 2
z̄��wo
2�1 +

�nl + z̄�2

�nb�2 �
+ 8 sin2 �x,y� z̄2

n2 − 2�lx,y
z̄

n
+ �lx,y

2 �� . �19�

The first contribution averages the expanded �diffracted�
wavefronts reflected from different depths, weighted by the
reflected power fraction at each depth, and is independent of
the incidence angle. The second contribution comes from the
oblique incidence �x,y �0 and constitutes a nondiffractive
spot-size elongation �“stretching”� due to the lateral displace-
ment of the reflected wavefront centers �weighted by the re-
flected power fraction.� This oblique stretching exceeds the
first term inside Eq. �19� even at small angles. For oblique
incidence in only one direction �say x� the reflected Gaussian
becomes elliptic with Wx�Wy.

An effective diffraction depth �ld can now be defined, so
that the reflected spot size �W2� at the grating’s leading edge
l equals a free-diffracted Gaussian width after a total propa-
gation distance l+2�ld, i.e., �W2�=wo

2�1+ ��l+2�ld�2 /b2��.
Then the spot size reflected from a thick grating is equal to
that reflected from a mirror �of same complex reflectivity�
placed at the effective diffraction distance l̄= l+�ld. It then

follows that l̄= ��l+2�ld�+ l� /2= �b��W2� /wo
2−1+ l� /2. The

difference �ld	 l̄− l defines the penetration depth inside the
grating for diffraction calculations. Again, because radiation
decays exponentially inside the grating, most of the radiation
is reflected from the front layers and, for large reflectance,
the penetration depth is much smaller than the grating thick-
ness G. Yet, since the grating thickness is large compared to
the incoming waist, the stretching �2�ld sin � in the re-
flected waist can be significant. Figure 5�a� shows the ratio
of reflected spot size to beam waist, W� /wo, versus the beam
waist for various incidence angles. Figure 5�b� shows the
corresponding ratio of the effective diffraction distance to the

grating distance l̄ / l for 
=0.0011�RG=0.995� and the same
parameters as before. For inclined incidence, the diffraction
distance can be a few times the grating separation l. The
spot-size expansion is reduced with increasing beam waist,
yet the effective diffraction distance increases with wo. This
happens because it takes a path correction of the order the
diffraction length b, �ld�b�wo

2� l, to account for any sig-
nificant expansion in waist. All that matters to the coupling
strength is the waist expansion. For on-center beam inci-
dence to the target cavity �=0, Eq. �17� yields 
V12
��1
+ �2l̄ /2b�2�−1/4=�wo /W�l̄� so a doubling in the effective dif-
fraction length reduces coupling by about 1 /�2.

It must be noted that the present calculation assumed a
constant reflection coefficient over a Gaussian wavefront.
Since the reflectivity of a grating depends on the axial wave-
number kz, and since a Gaussian involves an axial spread
�kz /k�1 / �kwo�2, constant reflectivity implies an axial
Gaussian spectral width �kz smaller than the grating reflec-
tion bandwidth �k. Because the latter must be smaller than
the longitudinal mode separation �kz /k=1 / �kL� for mode
control, a large enough Gaussian waist is desired at the laser
output so that

1/�kwo�2� �k/k� 1/�kL� , �20�

requiring wo
2�L� /2�. This is satisfied for the elected param-

eters. For spectral spreads exceeding the grating bandwidth
the reflectivity is considerably reduced by spectral filtering.

In conclusion, an effective grating distance l̂= l+�le ap-
plies for determining the axial path of the reflected beam.
The actual angle � for on-center sidelobe coupling is sin �
=d /2�l+�le� �for paraxial angles sin �� tan ��. A different

effective diffraction distance l̄= l+�ld applies for the beam
spot-size expansion, entering the overlap coupling formula
�17�. Optimum lateral coupling requires that the center of the
reflected sidelobe fall on the center of the next cavity d

−Xn=d−2l̂ sin �n	�n�wo, corresponding to sidelobe angle

tan �n	kn /kz�d /2l̂. Thus, l̂ determines the sidelobe center
offset and the transverse mode number for optimum coupling

no�kzad /2�l̂=a�o. The actual grating separation l is found

from the relation between l, l̂, and �. Finally, the diffraction

length l̄ is determined from l and � via Eq. �19�. The diffrac-

tion length l̄ enters explicitly in the coupling coefficient Eq.

�17�, while l̂ enters implicitly through the center off-set �.
The computed coupling coefficients and effective

lengths are used to show that the coupling strength depen-
dence on the array geometry can lead to transverse mode
selection. Figure 5 shows the calculated magnitude 
V12
 ver-
sus cavity mode waist wo for typical cavity parameters d
=600 �m, 2a=144 �m, L=500 �m, and wavelength �o

=980 nm. First, the results in Fig. 5�a� employ the nominal

FIG. 5. Beam expansion during distributed reflection. �a� Ratio of the rms
reflected spot size �at the grating’s leading edge z= l� W� to the incident
beam waist wo, vs the waist wo, for various incidence angles �. �b� Ratio of

effective diffraction distance to the grating edge distance l̂ / l vs the waist wo

for various incidence angles �. Reflectance fixed at R=0.995�
=0.0011�,
with same other parameters as in Figs. 3 and 4.
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grating distance l=3904 �m inside Eq. �17� instead of the

effective l̂ and l̄. A maximum overlap strength V12�1 /2
�half the mode power is emitted in each sidelobe� occurs for
no=12 and waist size wo�60 �m. The coupling strength
involving the nearby transverse modes no�1 or no�2 is
reduced by a factor of 2.5–3 because the off-set between the
reflected sidelobe center and the cavity center is comparable
to the mode waist wo. Next, the results in Fig. 5�b� employ

the correct effective values: an effective l̂=3904 �m corre-
sponds to the same resonant no=12 mode for an actual grat-
ing distance l=3291 �m. The corresponding diffraction

length l̄ varies as a function of wo and �n. The maximum
overlap strength V12 is reduced to 0.35 due to the distributed
interaction �i.e., additional diffraction� inside the grating.
Still, the coupling strength for the nearby transverse modes is
reduced by a factor of 2 relative to the no mode, hence, the
array geometry still leads to transverse mode selection.

V. COUPLED MODE GAIN

The goal now is to demonstrate that modes coupled via
sidelobe reflection by the grating have much higher growth
rate than free running modes in isolated cavities. First, we
will demonstrate the case for two coupled cavities and then
for an arbitrary size array.

A. Two coupled cavities

For operation near threshold current I� Ith, or during the
initial low power, exponential growth stage, radiative deple-
tion in the carrier density equation can be neglected com-
pared to nonradiative recombination. One may then assume a
uniform, near threshold carrier density Nj �Nth and a uni-
form cavity gain gj =g. The matrix equation for the growth
rate Eq. �12� becomes

�

�t
�E1

E2
� = ��E1

E2
�

= �vg�g1�11 − �1M11� vg�V12

vg�V12
� vg�g2�22 − �2M22�

� ,

�21�

where we have allowed slightly different cavity parameters
g1,2, �1,2 to reflect manufacturing tolerances between cavi-
ties. Defining G1= �g1�11−�1M11�, G2= �g2�22−�2M22� the

growth constant �=� /vg for the coupled cavity modes is
given by the roots of the determinant

�G1 − � �V12

�V12
� G2 − �

� = 0 ⇒ �� =
G1 + G2

2

�
��G1 − G2�2 + 4�2
V12
2

2
, �22�

while the cavity amplitude ratio �E2 /E1��= �G1−��� /�V12.
For strongly coupled modes 
V12
� 
G1−G2
 we have ��
���G1+G2� /2�� 
�V12
 and the highest growth rate �+ oc-
curs for the mode with E2 /E1�−V12 / 
V12
=−ei 12 with  12

being the phase advance along the feedback optical path.
When �
V12
� 
G1−G2
 the coupled growth rate �+ exceeds
the growth rate of either free running mode G1,2; in fact, the
exact eigenvalue �+ always exceeds the highest of the free
running max�G1 ,G2�. Now, reviving the implied modal de-
pendence of the coupling coefficient, the coupling is selec-
tive and applies only to free running modes of given
�kx ,kz�= �n� /a , p� /L�, i.e., V12=V12�n� , p����n�−n���p�
− p�. Since the coupled cavity modes have higher growth
rates than the corresponding free running modes, and since
only one coupled mode exists with proper selection of PTR
reflectivity and cavity geometry, this implies simultaneous
phase locking and mode selection. The effect is made stron-
ger by the low reflectivity �5%−10%� of the AR coating,
causing high cavity losses that exceed material gain �1,2

�g1,2 under usual current biases. As a result, free running
modes remain below threshold G1,2�0 and only the coupled
mode, experiencing the high reflectivity of the grating
�
V12
�−��1+�2� /2, exceeds lasing threshold.

Mode locking of two multimode emitting free-running
lasers into a single mode operation has been demonstrated in
Ref. 6 via the use of external grating. The phase locking into
single mode occurs for grating reflection bandwidth of 40
nm, smaller than the longitudinal mode separation of 70 pm
�the transverse mode separation is about 150 pm�. Single
mode coupling among three laser diodes has also been
achieved.

B. Periodic array

The discussion is extended to an arbitrary size periodic
array of identical cavity parameters. Taking advantage of the
symmetric tridiagonal form of Eq. �12� we introduce the

transformation E j�t�=ei�j!�Êo�t� and search for eigenvalues

�1 /vg��� /�t�Êo=�Êo casting Eq. �12� in the form

�
G − � �
V12
ei� 12+!� 0 ¯ ¯

�
V12
ei� 12−!� G − � �
V12
ei� 12+!� 0 ¯

¯ ¯ ¯ ¯ ¯

0 �
V12
ei� 12−!� G − � �
V12
ei� 12+!� 0

¯ ¯ ¯ ¯ ¯

¯ 0 0 �
V12
ei� 12−!� G − �
��

Êo

Êo

¯

Êo

¯

Êo

� = 0, �23�
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where �=� /vg and, due to identical parameters, G=go�11

−�oM11 and V12= 
V12
ei 12. Defining �=!+ 12 and Z
= �G−�� / ��
V12
ei 12� recasts the left-hand matrix as
�
V12
IZ, where

Z =�
Z ei! 0 ¯ ¯

e−i! Z ei! 0 ¯

¯ e−i! Z ei!
¯

¯ ¯ ¯ ¯ ¯

¯ 0 0 e−i! Z
� . �24�

The eigenvalue equation is given by D	det Z=0. The de-
terminant satisfies the recursion relation DN+1=ZDN−DN−1

relative to the array size N. Since any equation line yields the
relation Z=2 cos !, the determinant recurrence relation is
satisfied by by DN=A sin��N+1�!�=sin��N+1�!� /sin ! �A
selected so as to satisfy D1=A sin 2!=2 cos !�. The disper-
sion DN=0 yields !q=q� / �N+1� with q=1,2 , . . . ,N �but
q�0, N+1�. From the definitions of Z	�G−�� / 
V
=
−2 cos ! follows the gain eigenvalues:

�q = G + 2�
V12
 cos  12 cos !q. �25�

For in-phase optical path  12=2l� with cos  12�0 the col-
lective coupled mode gain exceeds the free running gain G
for 0�!q�� /2; the highest growth occurs for the “in-
phase” mode !=� / �N+1�. For out-of-phase optical path
 12= �2l+1�� with cos  12�0 the highest growth corre-
sponds to “out-of-phase” cavity phasing !=N� / �N+1�=�
−� / �N+1�.

According to Eqs. �21� and �22�, the fastest growing
mode �+ for two identical G1=G2 in-phase E1 /E2=1 coupled
cavities corresponds to a feedback phase-advance  =� and
is given by

� = g1�11 − �1M11 + �
V12
 . �26�

A similar maximum growth formula is obtained for an in-
phase !=0 array Eq. �25� for  12��, implying again a
feedback phase  12��. Here each cavity receives feedback
from two neighbors so �
V12
→2�
V12
 applies in Eq. �26�.
One can then determine the threshold gain, from �=0, as

ĝ1 = �1
M11

�11
− 2�


V12

�11

. �27�

The coupling reduces the gain threshold as radiation feed-
back from the grating reflection makes up for edge cavity-
mirror losses. Since the feedback strength depends on the
sidelobe angle �n, coupling diminishes and threshold in-
creases as one moves away from the optimum coupling angle
tan �n	�n� /a� /ko=d /2l, corresponding to transverse wave-
number no= �koad /2�l� ��¯� stands for integer part�. Figure
4 shows the collective mode threshold versus transverse
mode wavenumber for typical parameters Rc=0.10, �11

=0.10, M11=0.90, and RG=0.99, with the same array geom-
etry as in Fig. 3, corresponding to no=12. For the array
eigenmodes involving coupled no+1, or coupled no−1,
transverse modes the threshold gain increases by a factor of
3; for n far from no the coupling strength is practically zero
and one recovers the threshold of the “free running” cavity
modes; this threshold is higher by a factor of 5 from the no

coupled-cavity mode because the AR reflectivity is much
lower than the grating.

VI. VERTICAL MODE SUPPRESSION

Due to the finite frequency width D� of the material
gain g����0 many modes of the same longitudinal kz=kp

but different transverse kn wavenumber experience positive
material gain, Fig. 6�a�. The vertical free running mode n
=0 with kx=k0=�0=0 stands out because it experiences di-
rect reflection from the grating and thus high per-pass ampli-
fication, competing with coupled modes. One approach for
removing the vertical mode is to tailor the center wavenum-
ber kz reflected from the grating so that the frequency
��kz ,kn=0� lies just below the positive material gain, Fig.
6�b�. Then only oblique modes with kx=kn�0 fall in the posi-
tive material gain region, g���kz ,kn=0���0�g���kz ,kn�0��.
The oblique free running modes are subthreshold and only
the coupled mode is excited. Another method would be to
spatially erase �actually detune� the grating directly above
the cavities, Fig. 6�b�, so that negligible reflection occurs for
vertical incidence within the positive gain region.

Perhaps the simplest approach is based on the observa-
tion that the vertical mode experiences multiple reflections
between the grating and the AR coating; in effect the AR and
the grating form an external resonator for the vertical mode.

FIG. 6. �a� Coupling �overlap� strength vs cavity mode waist, for various
transverse wavenumbers �a� Using the actual grating distance l=3904 �m

in the coupling formula �b� using an effective distance l̂=3904 �m �corre-

sponding to an actual l=3291 �m� and the related diffraction distance l̄, to
account for the distributed grating interaction. The other array parameters
used are, d=600 �m, 2a=144 �m, L=500 �m, and wavelength �o

=980 nm. In both cases maximum coupling occurs for transverse mode
number no=12 corresponding to �n=4.497°.
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Etalon theory shows that the combined reflection coefficient
is determined by interference effects and given by


RGC
2 = � Rc + V11
RG
ei o

1 − V11
RG
Rce
i o
�2

=
�Rc + V11
RG
�2 − 4V11
RG
Rc sin2  o

2

�1 + V11
RG
Rc�2 + 4V11
RG
Rc sin2  o

2

, �28�

where the round trip phase, given by

 o = 2kol̂ + �o − ��2l̄� , �29�

contains the phase corrections from the grating reflection �o

and the paraxial diffraction � relative to plane wave optical

path 2kol̂. The factor V11 is the “self-interference” factor ex-
pressing the overlap of the reflected, expended wavefront
with the original Gaussian; V11→1 for plane infinite wave
�i.e., zero diffraction� in the usual etalon approximation. The
vertical reflectance 
RV
2 plotted in Fig. 7 is much smaller
than either the AR coating 
Rc
2 or the grating reflectance

RG
2 if the round trip path equals odd number of half-
wavelengths  o= �2q+1��, for destructive interference.
Hence, the combined reflectivity for the vertical mode in this
case is reduced to the level of the AR coating reflectivity. No
multiple reflections occur for the oblique sidelobe modes

where the intercavity reflection coupling is still given by the
single-pass 
R12
= 
V12
RG�1−Rc

2��
V12
RG.

The effective grating separation l̂ can now be chosen to
simultaneously satisfy the destructive interference condition
for the vertical mode  o= �2q+1�� and the in-phase locking
condition for the coupled array mode  �= �2q�+1��, respec-
tively,

2kol̂ + �o −
1

2
��2l̄� = �2q + 1�� , �30�

2ko�l̂ + �� − ���2l̄� −
1

2
��l̄�� +

ko�X��X� + 2��

4l̂

= �2q� + 1�� , �31�

where ko=� /c, X�	2l̂ tan �, and �=d−2l̂ tan � is the offset
between the reflected wavefront and the cavity center. Ac-
cording to the previous section different effective lengths

apply for the effective reflection length �axial path� l̂ and the

diffraction length z=2l̄ carried inside ��z�=tan−1�z /b�
=tan−1�2z / �kowo�2�. The paraxial limit sin �� tan � applies.
For a given kz

o, fixed by the grating period we have ko=kz
o for

the vertical mode and ko�=ko
�1+tan2 � for sidelobe modes.

Subtracting Eq. �31� from Eq. �30� yields

2�ko − ko��l̂q + �o − �� −
1

2
tan−1� 2ko�l̂q

�ko�wo�2�
− ko�l̂q�tan2 � +

ko��

ko�lq

tan �� = 2�q − q��� . �32�

Calling the left-hand side  q, Eq. �32� is equivalent to

mod� q,2�� = 0, �33�

where kol̂q is given by Eq. �30�. Equations �30�, �32�, and
�33� admit integer solutions q only for specific values of �q.

The corresponding effective grating distance l̂q=d /2 sin �q

follows directly from the zero off-set �=0 requirement, be-
tween the reflected wavefront center and the next cavity cen-
ter; this relation is included upfront inside Eq. �32�. Graphic
solutions are shown in Figs. 8�a� and 8�b�, plotting, respec-

FIG. 7. �Color online� Collective array mode gain threshold vs transverse
mode number shift from the optimum, �n=n−no, for typical grating reflec-
tivity RG=0.99, gain confinement factor �11=0.10, and edge mirror confine-
ment factor M11=0.90. Same array geometry as in Fig. 3, corresponding to
no=12. �a� Using actual grating separation and neglecting the distributed
interaction effects inside the grating �b� including the internal grating dif-
fraction via the use of effective distances. Various colors correspond to
different AR coating reflectivities Rc as marked.

FIG. 8. Geometric illustration of the phase advances for the vertical mode,
and for the oblique mode coupling
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tively, Mod� q�2� versus l̂q and Mod� q�2� versus �q; the

sought-after values l̂q and �q are given by the zero intercepts
Mod� q�2��0 �Figs. 9–11�. Thus satisfying both destructive
vertical interference and in-phase oblique cavity coupling
yields a set of discrete values lq and �q for the grating dis-
tance, and the related sidelobe angle, under given cavity

separation d. One such example is q=7075, ll̂q=3533 �m,
and �q=4.78° �q+1 /2 being the approximate value of the
grating separation in half-wavelengths.� Since �q must also
coincide with the sidelobe angle for some transverse cavity
mode, tan �q=tan �n	kn /ko= �n� /a� /ko, it follows that
n�q�=tan �qkoa /n�. The cavity width 2a can now be se-
lected so that the n�q� values are integer numbers. For �q

=4.78° we get n=13 by letting 2a=144 �m �for the same
given a, there are other �q values in Fig. 8�b� yielding integer
n in Fig. 8�c��.

In conclusion the analysis shows that transverse mode
selection and phase locking is possible in edge emitting ar-
rays via sidelobe reflection coupling off a narrow bandwidth
grating, with concurrent suppression of vertical mode lasing.
The analysis assumed “ideal” arrays of identical cavity pa-
rameters. In practice, unavoidable manufacturing variations
and thermal gradients cause variations from the nominal las-
ing frequencies. Phase locking is then possible only when the
nonlinear frequency pulling caused by cavity coupling can
overcome the original variations in the cold-cavity frequen-
cies. A relation exists9 between the rms cavity-to-cavity
variations, the maximum array size N and the coupling
strength V12, limiting scalability of the array size. This issue
will be addressed further in future work.

APPENDIX A: DERIVATION OF COUPLED-CAVITY
EQUATIONS

In Fig. 1 the active cavity regions are located between
−L�z�0, where Ro is the output mirror reflectivity at z=0,
R−L is the backmirror reflectivity at z=−L, and RG is the
grating mirror reflectivity placed at z= l. We now separate the
circulating cavity radiation in forward and backward waves
�e�kzz with slowly varying envelopes E��z , t�U�r�. From
now on the time dependence is implied inside E. Integrating
over the array volume, and since for guided mode profiles
z ,r are separable variables

�
−L

0

dz� �

�t
E��z� + vg

� �

�z
E��z��� dr2U�r�

= g�
−L

0

dzE��z�� dr2�g�r�U�r� . �A1�

Letting vg
��� /�z�E�= �� /�z��vg

�E�� for constant group veloc-
ity inside the cavity and applying Stokes identity converts
the � /�z integrant into a surface integral over the array edge
areas at z=−L and z=0,

FIG. 9. �Color online� �a� Wavenumber control by the grating and by the
material gain. Circular ring denotes the frequency range with positive ma-
terial gain: �left� positive gain modes of same kz include the vertical mode
k=kz, kx=0 �right� Vertical mode not in the positive gain region. �b� Use of
a spatially nonuniform DBR grating with erased or detuned regions above
the cavities, that shift the reflection kz window for vertical incidence.

FIG. 10. �a� The vertical mode reflectance RV= 
RV
2 vs optical path phase,
involving interference between the grating and the coating reflections �eta-
lon effect�. The grating reflectance is RG= 
RG
2=0.99 and various curves
represent different AR coating reflectance RC= 
RC
2 as marked. �b� For
destructive interference  o=� /2, the combined vertical reflectance is much
lower than the grating reflectance. In both �a� and �b� RV decreases with
increasing coating reflectance.
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�
−L

0

dz
�

�t
E��z�� dr2U�r�� �

S

dr2vg
�E��0�U�r�

� �
S

dr2vg
�E��− L�U�r�

= g�
−L

0

dzE��z�� dr2��r�U�r� . �A2�

The surface terms give the radiation flux escaping the cavi-
ties in the outward direction at z=0 and z=−L, respectively,
vg
�ẑ=�vg and vg

��−ẑ�=�vg. For the right going wave the
surface terms yield the output cavity losses

�
S

dr2vgToE+�0�U�r� . �A3�

For the left going wave the surface terms yield the backmir-
ror losses, and the feedback influx at z=0 from the external
cavity grating reflection

�
S

dr2vgTbE−�− L�U�r� − �
S

dr2vgRFPE+�0�U�r� d� ,

�A4�

where RF=ToRGTo and Pz=2lE+�0�U�r�d� produces the dif-
fracted radiation wavefronts emanating from neighbor cavi-
ties, Pz=2l being the paraxial propagator over twice the
grating distance 2l. Assuming bidirectional gain E+�z�
=E+�−L�e
�z+L� and E−�z�=E−�0�e−
z the integral along the
cavity length yields

O�
−L

0

dzE+�z� = OLE+�− L�
e
L − 1


L
= OLE+�0�

1 − e−
L


L
,

�A5�

O�
−L

0

dzE−�z� = OLE−�0�
e
L − 1


L
= OLE−�− L�

1 − e−
L


L
,

�A6�

where O is any scalar �i.e., ��r�� or operator �i.e., � /�t� that
does not depend on z. The effective cavity length is defined

by 2L̂E+�0�	�−L
0 dzE+�z�+�−L

0 dzE−�z� yielding, together with
the boundary condition E+�−L�=R−LE−�−L�=E+�0�e−
L,

L̂ = L
1 − e−
L


L

1 + R−L

2R−L
. �A7�

The effective L̂ accounts for the amplitude variation along

the cavity; L̂→L for small gain 
L�1 and R−L�1. Sum-
ming up the volume integrals for both right- and left-handed
waves, which amounts to a volume integral over one round
trip, and inserting expressions �A2�, �A3�, and �A7� yields

�

�t
E+�0�� dr2U�r� = gE+�0�� dr2U�r��g�r�

−
To

2L̂
E+�0�� dr2U�r��m�r�

−
T−L

2L̂
E−�− L�� dr2U�r��m�r�

+
RF

2L̂
E+�0�� dr2U�r�Pz=2lU�r� d� .

�A8�

One may substitute E−�−L�=E+�0�e−
L /R−L, whereby Eq.
�A8� expresses the time evolution of the right-propagating
wave amplitude at the output E+�0�. We now unfold the im-
plicit periodic superposition for the array mode profile, gain
and reflectivity inside Eq. �A8�, according to E�z�U�r�
= jE j�z�Uj�r�= jE j�z�U�r− jd�, �m,g�r�= j� j

m,g�r�
= j�

m,g�r− jd�. Taking the projection of Eq. �A8� with the
ith cavity mode profile, and using the coupling coefficient
definitions Eqs. �6�–�8� yields the rate Eq. �5� for the slow
time evolution of the ith cavity complex envelope at the
output Ei�t�	Ei

+�z=0, t�.

FIG. 11. Geometrical design parameters for simultaneous vertical mode
suppression and in-phase oblique cavity phase locking. The corresponding

effective grating distances l̂q in �a�, and the sidelobe angles �q in �b� are
given by the horizontal axis intersections Mod� q�2�=0. Some of these
intersections also yield integer transverse mode numbers n�q� in �c�. The
other array parameters are d=600 �m, 2a=144 �m, wo=75 �m, L
=500 �m, and wavelength �o=980 nm. Each dot shows a q value differing
by unity, and arrows point the increasing direction, from 6000 to 9000.
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The cavity loss coefficients at the cavity edges must be
computed from the definitions of power reflectance R and
transmittance T, where Pr=RPo and Pt=TPo are, respec-
tively, the reflected and transmitted power at a given inter-
face. The reflected and transmitted amplitudes for an incom-
ing monochromatic wave of amplitude Eo incident at an
angle � at the interface between dielectric constants 	, 	� are
given by Eo�=rEo and Eo�= tEo, respectively. The amplitude
reflectivity and transmissivity, respectively, r, t, follow from
boundary condition matching. Substituting these values in
the general expression for the power flux �vg /16���	2Eo

2

+Bo
2�=vg /16��	Eo

2+ �ck /��2Eo
2�= �vg" /8��Eo

2, the power
balance Po= PR+ PT yields

cos �
vg	

8�
Eo

2 = cos �
vg	

8�
Eo�

2 + cos ��
vg�	�

8�
Eo�

2 �A9�

Substituting Eo�=rEo, Eo�= tEo and dividing both sides by the
incoming flux yields

1 = R + T = 
r
2 + 
t
2
vg�

vg

	�

	
. �A10�

The reflectance is identified by R= 
r
2 and transmittance by
T=1−R= 
t
2�vg� /vg��	� /	�. Notice that R= 
r
2 but T=1
− 
r
2� 
t
2 due to the difference in power density and propa-
gation angle after the interface. It is thus easier to use reflec-
tance 
r
2 for both transmission and reflection.

APPENDIX B: PARAXIAL PROPAGATION

We seek the free-space evolution for a Cosine–Gauss–
Hermite U�xo ;0�=e�kmxoHn��2xo /wo�exp�−xo

2 /wo
2�, given by

the one-dimensional paraxial propagator

U�x;z� =� dxoU�xo;0�� ik

2�z
exp�iko

�x − xo�2

2z
� . �B1�

Consider the expression

�
−�

�

d�o exp�− s2 + 2s�o −
�o

2

2
+
#

2
�� − �o�2 − 2$�o�

�B2�

with the notation #= ib /z, �=x�2 /wo, and $= ikxwo /2�2.
Completing the squares in the exponent recasts Eq. �B2� as

exp�− s̄2 + 2s̄�̄ −
�̄2

2
�exp�−

1

2

#

#2 − 1
�2 −

2#

#2 − 1
$2

+
4#2

#2 − 1
$��

�
−�

�

d�o exp�−
1 − #

2
�o

2 + 2�s + $ −
#

2
��o

−
2

1 − #
�s + $ −

#

2
�2� , �B3�

where ŝ=s��1+#� / �1−#� and �̂=# /�#2−1��−$ /2#�. The
right-hand integral yields just 2� /�1−#. Now, using gener-
ating function definition for Gauss–Hermite, the terms exp�

−s2+2s�− ��2 /2�� appearing on both Eqs. �B2� and �B3� are
expanded in powers of sm as

exp�− s2 + 2s� −
�2

2
� = 

m=0

�
sm

m!
Hm���e−�2/2, �B4�

the Gauss–Hermite functions %m���=Hm���exp�−�2 /2� be-
ing the expansion coefficients. After the expansion and a
term-by-term equation among the same powers sm on both
sides of Eqs. �B2� and �B3� yield

�
−�

�

d�o exp�#
2

�� − �o�2�%m��o�exp�2$�o�

=� 2�

1 − #
�1 + #

1 − #
�m/2

Hm��̂�exp�−
1

2
�̂2�1 + #��

exp�− #
�2

2
� . �B5�

Multiplying both sides by the remaining propagator factor
�iko /2�z in Eq. �B1�, and by wo /�2 to convert to x integra-
tion, after symbol manipulations �#= ib /z= ikowo

2 /2z� the left
hand equals umn�x ;z�, the convolution of the Cosine–Gauss–
Hermite with the paraxial propagator

umn�x;z� = �
−�

�

dxo� ik

2�z
exp�ik

�x − xo�2

2z
�%m

��2x/wo�exp�iknxo� . �B6�

By the same token, the right-hand side of Eq. �B5� multiplied
by �ikowo

2 /4�z=�ib /2�z, using �ib /2�z�2� / �1−#�
=e−i��z�/2 /�1+z2 /b2, ��1+#� / �1−#��m/2=e−im��z�, and con-
verting �̂=# /�#2−1��− �$ /2#��=�2�x−z sin �n� /W�z�,
yields the sought after the rhs of Eq. �15�. The derivation is
completed by multiplying both sides by the normalization
factor Cmn�2 /�wo

2�1/4. Because paraxial propagation con-
serves flux, the normalization constant is obtained at the
waist z=0. It can be shown that Cm0=1 /�2mm! and C0n

=1 /�2�1+exp�−kn
2wo

2 /2��.

APPENDIX C: REFLECTION COUPLING COEFFICIENT

We assume that a collimating mirror with matched ra-
dius of curvature and focal distance is focusing the radiation
in the fast diffracting y direction and minimizing the
y-diffraction effects. Thus, the overlap integral �8�, Vi,i�1

=V12, is approximated by

V12 =� dr2U�r;0�U�r + d;z = 2l�

=� dy� dxs�y ;0�s�y ;2l�umn�x;0�umn�x + d;2l�

� � dys2�y�� dxumn�x;0�umn�x + d;2l�

=� dxumn
� �x;0�umn�x + d;2l� �C1�

because of s�y ;z=2l��s�y ;z=0� and the implicit normaliza-
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tion �dys2�y�=1. Diffraction enters from the free diffraction
along the “slow” x axis. In Eq. �C1�, the target cavity profile
umn
� �x ;0� and the diffracted feedback radiation profile umn

� �x
+d ;z=2l� are given, respectively, by Eqs. �14� and �15�. We
limit the overlap calculation for the Cosine–Gaussian mode
m=0. Taking into account the separation d between the two
cavity centers and expressing the diffracted beam coordi-
nates x� in target cavity coordinates x�=x+d=x+Xn+�,
where Xn	2l sin �n is the center location for the reflected
wavefront and �=d−Xn is its offset from the target cavity
center, yields

V0n
++ = C0n

2 � 4

�2wo
2W2�2l��1/4� dx�e+iknxe−x2/wo

2
��

e−�i/2���2l�e−�1+i�2l/b����x − xn�2/W2�2l��

e−iko��x + Xn + ��2/2�2l��, �C2�

with W2�2l�=wo
2�1+ �2l /b�2�. The flip in the wavefront cur-

vature from the reflection at the grating has been included in
Eq. �C2�. After rearranging terms the x integral becomes

I++ = eiko��Xn + ��2/2�2l��� dxe−�1/wo
2��x2�1+��+2x��+�2��

= e−iko��Xn + ��2/2�2l��e−��2/wo
2��

� dxe−��1+��/wo
2��x2+2���/�1+���x�, �C3�

where �	1 / �1− i�2l� /b�= �1+ i�2l� /b� / �1+ �2l�2 /b2�. Ex-
pressing the integral in terms of the error function erf�y�
= �1 /����0

�dxe−x2
and putting back in Eq. �C2� yields

V0n
++ = C0n

2 � wo
2

W2�2l��1/4� 2

1 + �
e−i���2l�/2�

ei��koXn�Xn+2���/�2�2l���e−��2/wo
2���/�1+���

1

2�erf�a�1 + �

wo
+

��

wo
�1 + �

�
− erf�−

a�1 + �

wo
+

��

wo
�1 + �

�� . �C4�

The calculation of V0n
−− involves the change of signs xn→

−xn, �→−� and yields the same result, Eq. �C2�. Note that
V++�V−−� expresses the coupling between same transverse
wave components eiknx�e−iknx� among two cavities. In the
beating between the reflected and the target cavity fields the
fast phase �exp�i2koxxn /4l� inside the far-field curvature
exp�i2ko�x+Xn�2 /2�2l�� cancels out the fast transverse phase
�eiknx��=e−iknx in the target cavity near field, ikox�Xn /2l
−kn /ko�=0, since xn /2l=sin �n=kn /ko. On the other hand,
the coupling coefficient between opposite transverse wave-
numbers

V0n
+− = V0n

−+� = Cm
2 � 4

�2wo
2W2�2l��1/4� dx�e−iknxe−x2/wo

2
��

e−�i/2���2l�

e−�1+i�2l/b����x − Xn�2/W2�2l��

e−iko��x + Xn + ��2/2�2l�� �C5�

contains a fast varying phase exp�ikox�Xn /2l+kn /ko��
=exp�2iko sin �nx�=exp�4i�b /wo

2�sin �nx�, producing the
overlap integral

I+− = eiko��Xn + ��2/2�2l��� dxe−�1/wo
2��x2�1+��+2x���+2ib sin �n�+�2��

= e−iko��Xn + ��2/2�2l��e−��2/wo
2��

� dxe−��1+��/wo
2��x2+2����+2ib sin �n�/�1+���x� �C6�

instead of Eq. �C3�. Integration and substitution in Eq. �C5�
yields or the fundamental Cosine–Gaussian m=0,

V0n
�� = C0n

2 � wo
2

W2�2l��1/4� 2

1 + �
e−i���2l�/2�

ei��koXn�Xn+2���/2�2l��ei�4��b sin �n/�wo
2�1+����

e−��2�+4b2 sin2�n�/�wo
2�1+���

1

2�erf�a�1 + �

wo
+
�� + 2ib sin �n

wo
�1 + �

�
− erf�−

a�1 + �

wo
+
�� + 2ib sin �n

wo
�1 + �

�� . �C7�

Combining Eqs. �C4� and �C7� yields

V12
0n =

1

2�1 + exp�− kn
2wo

2/2��� wo
2

W2�2l��1/4� 2

1 + �

e−i���2l�/2�ei��koXn�Xn+2���/2�2l��

e−��2/wo
2���/�1+���� 1

2�erf�a�1 + �

wo
+

��

wo
�1 + �

�
− erf�−

a�1 + �

wo
+

��

wo
�1 + �

��
+ e−4b2 sin2�n/�wo

2�1+���ei�4��b sin �n/�wo
2�1+����

1

2�erf�a�1 + �

wo
+
�� + 2ib sin �n

wo
�1 + �

�
− erf�−

a�1 + �

wo
+
�� + 2ib sin �n

wo
�1 + �

��� . �C8�

This is the full paraxial result for sidelobe overlap. For the
usual parameter scaling b2 /wo

2=ko
2wo

2 /4�kn
2wo

2�1, the sec-
ond summand inside the curly bracket, representing V+− for
the coupling among opposite transverse wavenumbers �kn,
is negligible. When in addition the cavity width is larger than
the mode waist a /wo�2 the erf square bracket tends to
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unity, and Eq. �C8� with substitutions for �, yields
Eq. �17�.

APPENDIX D: REFLECTION BY BRAGG GRATING:
BEAM EXPANSION AND EFFECTIVE GRATING
DISTANCE

The long interaction path inside the thick, low-index
contrast Bragg grating, employed for sidelobe reflection,
causes significant changes in the reflected wavefront. Due to
the distributed interaction, the total reflected radiation at the
leading grating edge z= l is a superposition of partial wave-
fronts dE�z� reflected from different depths z̄	z− l within
the grating thickness G. Due to different traveled distances
2z̄, wavefronts reflected off deeper layers yield increasingly
expanded �diffracted� widths W�l+ z̄� with laterally displaced
centers by x=2z̄ sin ��, where the diffracted angle sin ��
=sin � /n. Applying the paraxial propagation to each partial
wavefront, and summing up over z̄, the reflected wavefront at
z̄=0�z= l� for the incoming Gaussian E�x ,y ; l�
=Eo

�kb /��1 / �l+ ib��eik��x2+y2�/�2l+ib�� is given by

E��x,y ;l� = �
0

G

dE�z̄��nk nb

�

1

�nl + z̄� + inb

exp�ink
�x − 2z̄ sin �x��

2 + �y − 2z̄ sin �y��
2

2��nl + z̄� + inb� � .

�D1�

Note that propagation inside a grating of average refraction
index n involves wavefronts stemming from an “image”
waist wo at distance nl, where l is the actual free-space dis-
tance of the incoming beam waist wo from the grating lead-
ing edge. The diffraction length is nb, where b=kwo

2 /2, the
free-space Rayleigh length. Now, for small index contrast,
the power distribution inside the grating is given to a very
good approximation by the exponential E2�z̄�=Eo

2e−2
z̄,
where 
 is related to the reflectance R by 
=−ln R /2G, thus
the partially reflected amplitude from z̄ is dE�z̄�=dz̄
Eoe−
z̄.
Substitution in Eq. �D1� yields Eq. �18�. Equation �18� is
exact within the paraxial framework.

The lateral shift in the reflected wavefront center can be
found from the location xo of the peak �RE��x ,y ; l� / 
�x
xo
=0. Using Eq. �18� yields an integral equation for �x	xo,

�
0

G

dz̄
 exp�− 
z̄�
2 2��x − 2z̄ sin �x/n�

�wo
2�1 + �nl + z̄�2/�nb�2�2

exp�−
��x − 2z̄ sin �x/n�2

wo
2�1 + �nl + z̄�2/�nb�2�� = 0. �D2�

The penetration depth �lx� is defined by �x=2 sin �x��lx�, as if
all radiation has been reflected from a layer at depth �lx�
inside the grating. The emerging from the grating wavefronts
appear as reflected from a free-space penetration depth �lx

=�l� /n, Fig. 4�c�, with �x=2 sin �x�lx.
Analytic estimates of the waist expansion are possible by

taking the mean value of the radiation spot size around the
shifted axis ��x−�x�2+ �y−�y�2� over power. For Gaussian
beams the 1 /e-width equals twice the rms spot size �Wx

2�

=2��x−�x�2�, etc. Using the absolute square of the radiation
amplitude inside Eq. �18�, the fact that dP�z�=−�2
�P�z�,
and weighting by the total reflected power R
=�0

Gdz̄�2
�e−2
z̄=1−exp�−2
G�, one has

�Wx
2� =

2

R
�

0

G

dz̄ 2
 exp�− 2
z̄�


2

�wo
2�1 + �nl + z̄�2/�nb�2�

�
−�

� �
−�

�

dxdy�x − �x�2

exp�−
�x − 2z̄ sin �x/n�2 + �y − 2z̄ sin �y/n�2

wo
2�1 + �nl + z̄�2/�nb�2� � ,

�D3�

where use was made of the definition b=kwo
2 /2. Substituting

�x,y =2�lx,y sin �x,y, changing variables to x̄=x−2z̄ sin �y /n,
ȳ−2z̄ sin �y /n, the double integral becomes

�
−�

� �
−�

�

dx̄dȳ�x̄ + 2 sin �x� z̄

n
− �x��2

exp�−
x̄2 + ȳ2

wo
2�1 + �nl + z̄�2/�nb�2�� . �D4�

Performing the y integration, and since odd powers of x̄ yield
null during x integration

��wo
2�1 + �nl + z̄�2/�nb�2�

2
�

−�

�

dx̄�x̄2 + 4 sin2 �x

� z̄

n
− �x�2�exp�−

x̄2

wo
2�1 + �nl + z̄�2/�nb�2��

=
�wo

2�1 + �nl + z̄�2/�nb�2�
2 �wo

2�1 + �nl + z̄�2/�nb�2�
2

+ 4 sin2 �x� z̄

n
− �x�2� . �D5�

Substituting inside Eq. �D3� yields Eq. �19�, and similar
for Wy. Analytic evaluation is possible with the approxima-
tion �lx�1 /2
.

We digress to suggest that a more accurate treatment of
the reflected radiation involves an expansion of the reflected
wavefront �D2� into a superposition of Gauss–Hermite �G-H�
modes, where the expansion coefficients are determined by
the integral projections into the corresponding G-H mode.
This has the advantage that further propagation of the re-
flected radiation is given in exact form for each G-H mode
by the usual waist and curvature paraxial transformation.
Many equivalent representations exist, depending on the
choice of the reflected mode waist for the G-H family. The
optimum representation corresponds to finding the reflected
waist value W� that maximizes the reflection coefficient into
the fundamental mode. A variational principle has been for-
mulated for that purpose.
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