48 research outputs found

    Cyanide resistant respiration and the alternative oxidase pathway : A from to mammals

    Get PDF
    In a large number of organisms covering all phyla, the mitochondrial respiratory chain harbors, in addition to the conventional elements, auxiliary proteins that confer adaptive metabolic plasticity. The alternative oxidase (AOX) represents one of the most studied auxiliary proteins, initially identified in plants. In contrast to the standard respiratory chain, the AOX mediates a thermogenic cyanide-resistant respiration; a phenomenon that has been of great interest for over 2 centuries in that energy is not conserved when electrons flow through it. Here we summarize centuries of studies starting from the early observations of thermogenicity in plants and the identification of cyanide resistant respiration, to the fascinating discovery of the AOX and its current applications in animals under normal and pathological conditions.Peer reviewe

    Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems

    Get PDF
    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease. (C) 2016 The Authors. Published by Elsevier Inc.Peer reviewe

    Mitochondria are physiologically maintained at close to 50 degrees C

    Get PDF
    In endothermic species, heat released as a product of metabolism ensures stable internal temperature throughout the organism, despite varying environmental conditions. Mitochondria are major actors in this thermogenic process. Part of the energy released by the oxidation of respiratory substrates drives ATP synthesis and metabolite transport, but a substantial proportion is released as heat. Using a temperature-sensitive fluorescent probe targeted to mitochondria, we measured mitochondrial temperature in situ under different physiological conditions. At a constant external temperature of 38 degrees C, mitochondria were more than 10 degrees C warmer when the respiratory chain (RC) was fully functional, both in human embryonic kidney (HEK) 293 cells and primary skin fibroblasts. This differential was abolished in cells depleted of mitochondrial DNA or treated with respiratory inhibitors but preserved or enhanced by expressing thermogenic enzymes, such as the alternative oxidase or the uncoupling protein 1. The activity of various RC enzymes was maximal at or slightly above 50 degrees C. In view of their potential consequences, these observations need to be further validated and explored by independent methods. Our study prompts a critical re-examination of the literature on mitochondria.Peer reviewe

    Mouse Studies to Shape Clinical Trials for Mitochondrial Diseases: High Fat Diet in Harlequin Mice

    Get PDF
    BACKGROUND: Therapeutic options in human mitochondrial oxidative phosphorylation (OXPHOS) diseases have been poorly evaluated mostly because of the scarcity of cohorts and the inter-individual variability of disease progression. Thus, while a high fat diet (HFD) is often recommended, data regarding efficacy are limited. Our objectives were 1) to determine our ability to evaluate therapeutic options in the Harlequin OXPHOS complex I (CI)-deficient mice, in the context of a mitochondrial disease with human hallmarks and 2) to assess the effects of a HFD. METHODS AND FINDINGS: Before launching long and expensive animal studies, we showed that palmitate afforded long-term death-protection in 3 CI-mutant human fibroblasts cell lines. We next demonstrated that using the Harlequin mouse, it was possible to draw solid conclusions on the efficacy of a 5-month-HFD on neurodegenerative symptoms. Moreover, we could identify a group of highly responsive animals, echoing the high variability of the disease progression in Harlequin mice. CONCLUSIONS: These results suggest that a reduced number of patients with identical genetic disease should be sufficient to reach firm conclusions as far as the potential existence of responders and non responders is recognized. They also positively prefigure HFD-trials in OXPHOS-deficient patients

    Effets de mutations de la translocase ATP/ADP mitochondriale sur la stabilité de l'ADN mitochondrial et la longévité chez le champignon filamenteux Podospora anserina

    No full text
    Chez l homme, plusieurs mutations dans le gène hANTI codant le transporteur ATP/ADP mitochondrial sont associées à des cas d ophtalmoplégie progressive autosomale dominante (adPEO) caractérisés par l accumulation de délétions de l ADN mitochondrial (ADNmt). Le mécanisme responsable de cette instabilité est encore obscur. Deux hypothèses sont proposées, l une stipule que l effet primaire des mutations est de découpler le membrane interne mitochondriale, ce qui secondairement entraîne une déstabilisation de l ANDmt, l autre propose que l effet primaire des mutations est perturber le pool de nucléotides adényliniques , ce qui entraine la déstabilisation de l ADNmt. En utilisant le modèle Podospora anserina, j ai montré que les mutations humaines A114P, L98P et V289M introduites dans le gène homologue PaAnt sont responsables de défauts de croissance, d une diminutions de la production de radicaux libres (ROS), d une chute du potentiel du membrane ( ) et de l accumulation de larges délétions de l ADNmt entraînant une mort prématurée. J ai également montré que l instabilité de l ADNmt des mutations M106P et A121P ne peut s expliquer uniquement par une chute du ni par une augmentation du ROS comme il est généralement proposé puisque cette instabilité est supprimée sans restauration du et des ROS en présence d un allèle du gène rmp1 impliqué dans le cross-talk mitochondrie-noyau et d un allèle du gène AS1 codant une sous unité du ribosome cytosolique. L instabilité de l ADNmt associée à la mutation S296M n est supprimée par aucun des 2 allèles. Ces résultats illustrent le rôle central du fond génétique dans le développement des ces pathologies.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Suppression of Mitochondrial DNA Instability of Autosomal Dominant Forms of Progressive External Ophthalmoplegia-Associated ANT1 Mutations in Podospora anserina

    No full text
    Maintenance and expression of mitochondrial DNA (mtDNA) are essential for the cell and the organism. In humans, several mutations in the adenine nucleotide translocase gene ANT1 are associated with multiple mtDNA deletions and autosomal dominant forms of progressive external ophthalmoplegia (adPEO). The mechanisms underlying the mtDNA instability are still obscure. A current hypothesis proposes that these pathogenic mutations primarily uncouple the mitochondrial inner membrane, which secondarily causes mtDNA instability. Here we show that the three adPEO-associated mutations equivalent to A114P, L98P, and V289M introduced into the Podospora anserina ANT1 ortholog dominantly cause severe growth defects, decreased reactive oxygen species production (ROS), decreased mitochondrial inner membrane potential (Δψ), and accumulation of large-scale mtDNA deletions leading to premature death. Interestingly, we show that, at least for the adPEO-type M106P and A121P mutant alleles, the associated mtDNA instability cannot be attributed only to a reduced membrane potential or to an increased ROS level since it can be suppressed without restoration of the Δψ or modification of the ROS production. Suppression of mtDNA instability due to the M106P and A121P mutations was obtained by an allele of the rmp1 gene involved in nucleo-mitochondrial cross- talk and also by an allele of the AS1 gene encoding a cytosolic ribosomal protein. In contrast, the mtDNA instability caused by the S296M mutation was not suppressed by these alleles

    Linezolid Toxicity and Mitochondrial Susceptibility: A Novel Neurological Complication in a Lebanese Patient

    Get PDF
    The recent rise in the use of linezolid to treat a variety of resistant pathogens has uncovered many side effects. Some patients develop lactic acidosis, myelosuppression, optic or peripheral neuropathies and myopathies. We evaluated an elderly patient who presented to the Emergency Room with linezolid toxicity and a novel neurologic complication characterized by bilateral globi pallidi necrosis. Mitochondrial ribosome inhibition was described to be the predisposing factor. The patient belongs to the mitochondrial J1 haplotype known to be associated with side effects of the drug. We recommend based on the molecular profile of the illness pretreatment considerations and complication management

    Mannose Inhibits the Pentose Phosphate Pathway in Colorectal Cancer and Enhances Sensitivity to 5-Fluorouracil Therapy

    No full text
    Colorectal cancer (CRC) is one of the leading cancers and causes of death in patients. 5-fluorouracil (5-FU) is the therapy of choice for CRC, but it exhibits high toxicity and drug resistance. Tumorigenesis is characterized by a deregulated metabolism, which promotes cancer cell growth and survival. The pentose phosphate pathway (PPP) is required for the synthesis of ribonucleotides and the regulation of reactive oxygen species and is upregulated in CRC. Mannose was recently reported to halt tumor growth and impair the PPP. Mannose inhibitory effects on tumor growth are inversely related to the levels of phosphomannose isomerase (PMI). An in silico analysis showed low PMI levels in human CRC tissues. We, therefore, investigated the effect of mannose alone or in combination with 5-FU in human CRC cell lines with different p53 and 5-FU resistance statuses. Mannose resulted in a dose-dependent inhibition of cell growth and synergized with 5-FU treatment in all tested cancer cell lines. Mannose alone or in combination with 5-FU reduced the total dehydrogenase activity of key PPP enzymes, enhanced oxidative stress, and induced DNA damage in CRC cells. Importantly, single mannose or combination treatments with 5-FU were well tolerated and reduced tumor volumes in a mouse xenograft model. In summary, mannose alone or in combination with 5-FU may represent a novel therapeutic strategy in CRC
    corecore