152 research outputs found

    The role of low-mass star clusters in massive star formation. The Orion Case

    Full text link
    To distinguish between the different theories proposed to explain massive star formation, it is crucial to establish the distribution, the extinction, and the density of low-mass stars in massive star-forming regions. We analyze deep X-ray observations of the Orion massive star-forming region using the Chandra Orion Ultradeep Project (COUP) catalog. We studied the stellar distribution as a function of extinction, with cells of 0.03 pc x 0.03 pc, the typical size of protostellar cores. We derived stellar density maps and calculated cluster stellar densities. We found that low-mass stars cluster toward the three massive star-forming regions: the Trapezium Cluster (TC), the Orion Hot Core (OHC), and OMC1-S. We derived low-mass stellar densities of 10^{5} stars pc^{-3} in the TC and OMC1-S, and of 10^{6} stars pc^{-3} in the OHC. The close association between the low-mass star clusters with massive star cradles supports the role of these clusters in the formation of massive stars. The X-ray observations show for the first time in the TC that low-mass stars with intermediate extinction are clustered toward the position of the most massive star, which is surrounded by a ring of non-extincted low-mass stars. This 'envelope-core' structure is also supported by infrared and optical observations. Our analysis suggests that at least two basic ingredients are needed in massive star formation: the presence of dense gas and a cluster of low-mass stars. The scenario that better explains our findings assumes high fragmentation in the parental core, accretion at subcore scales that forms a low-mass stellar cluster, and subsequent competitive accretion. Finally, although coalescence does not seem a common mechanism for building up massive stars, we show that a single stellar merger may have occurred in the evolution of the OHC cluster, favored by the presence of disks, binaries, and gas accretion.Comment: 17 pages, 11 figures, 3 Tables. Accepted for publication in A&

    Does ict resources improve the sport teaching processes in handball?

    Full text link
    La motivación (M) y la capacidad de percepción-análisis (PA) del juego, variables del proceso de enseñanza-aprendizaje, fueron evaluadas tras utilizar diferentes recursos durante las explicaciones del entrenador. 71 jugadores(Sub-18) fueron divididos en dos grupos: G1 (n=35): recursos tradicionales; G2 (n=36): recursos multimedia. Se evaluó el nivel inicial (i) y final (f), tras 10 sesiones de entrenamiento. Ambas variables mejoraron significativamente en ambos grupos. Fueron mayores las mejoras del G2 en ambas variables (p<.001). Se hallaron únicamente diferencias intergrupales en la evaluación final en M y PA (p<.001), mostrando el Grupo 2 mejores resultados. Se concluye que la utilización de recursos multimedia posee un efecto positivo mayor que los recursos tradicionales sobre M y PA en jugadores de balonmano (Sub-18).Motivation (M) and game perception-analysis ability (PA), variables in the teaching-learning process, were evaluated after using different resources during the coach’s explanations. Seventy-one players (Under-18) were divided into 2 groups: G1 (n = 35) traditional resources; G2 (n = 36) multimedia resources. Initial (i) and final (f) levels of both variables were evaluated after 10 training sessions. Both variables showed a significant improvement in both groups. The improvements shown in G2 were greater in both variables (p<0.001). Intergroup differences were only found in the final evaluation in M and PA (p<0,001), where G2 obtained better results. It was concluded that using multimedia resources has a greater positive effect than traditional resources on M and PA in under-18 handball players

    Abundant Z-cyanomethanimine in the interstellar medium: paving the way to the synthesis of adenine

    Full text link
    We report the first detection in the interstellar medium of the Z-isomer of cyanomethanimine (HNCHCN), an HCN dimer proposed as precursor of adenine. We identified six transitions of Z-cyanomethanimine, along with five transitions of E-cyanomethanimine, using IRAM 30m observations towards the Galactic Center quiescent molecular cloud G+0.693. The Z-isomer has a column density of (2.0±\pm0.6)×\times1014^{14} cm2^{-2} and an abundance of 1.5×\times109^{-9}. The relative abundance ratio between the isomers is [Z/E]\sim6. This value cannot be explained by the two chemical formation routes previously proposed (gas-phase and grain surface), which predicts abundances ratios between 0.9 and 1.5. The observed [Z/E] ratio is in good agreement with thermodynamic equilibrium at the gas kinetic temperature (130-210 K). Since isomerization is not possible in the ISM, the two species may be formed at high temperature. New chemical models, including surface chemistry on dust grains and gas-phase reactions, should be explored to explain our findings. Whatever the formation mechanism, the high abundance of Z-HNCHCN shows that precursors of adenine are efficiently formed in the ISM.Comment: Accepted in Monthly Notices of the Royal Astronomical Society Letter

    Complex organic molecules in the Galactic Centre: the N-bearing family

    Full text link
    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30\, telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2_2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.Comment: 24 pages, 23 figures, 7 tables, accepted for publication in MNRA

    The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bacterial Hfq protein is able to interact with diverse RNA molecules, including regulatory small non-coding RNAs (sRNAs), and thus it is recognized as a global post-transcriptional regulator of gene expression. Loss of Hfq has an extensive impact in bacterial physiology which in several animal pathogens influences virulence. <it>Sinorhizobium meliloti </it>is a model soil bacterium known for its ability to establish a beneficial nitrogen-fixing intracellular symbiosis with alfalfa. Despite the predicted general involvement of Hfq in the establishment of successful bacteria-eukaryote interactions, its function in <it>S. meliloti </it>has remained unexplored.</p> <p>Results</p> <p>Two independent <it>S. meliloti </it>mutants, 2011-3.4 and 1021Δ<it>hfq</it>, were obtained by disruption and deletion of the <it>hfq </it>gene in the wild-type strains 2011 and 1021, respectively, both exhibiting similar growth defects as free-living bacteria. Transcriptomic profiling of 1021Δ<it>hfq </it>revealed a general down-regulation of genes of sugar transporters and some enzymes of the central carbon metabolism, whereas transcripts specifying the uptake and metabolism of nitrogen sources (mainly amino acids) were more abundant than in the wild-type strain. Proteomic analysis of the 2011-3.4 mutant independently confirmed these observations. Symbiotic tests showed that lack of Hfq led to a delayed nodulation, severely compromised bacterial competitiveness on alfalfa roots and impaired normal plant growth. Furthermore, a large proportion of nodules (55%-64%) elicited by the 1021Δ<it>hfq </it>mutant were non-fixing, with scarce content in bacteroids and signs of premature senescence of endosymbiotic bacteria. RT-PCR experiments on RNA from bacteria grown under aerobic and microoxic conditions revealed that Hfq contributes to regulation of <it>nifA </it>and <it>fixK1/K2</it>, the genes controlling nitrogen fixation, although the Hfq-mediated regulation of <it>fixK </it>is only aerobiosis dependent. Finally, we found that some of the recently identified <it>S. meliloti </it>sRNAs co-inmunoprecipitate with a FLAG-epitope tagged Hfq protein.</p> <p>Conclusions</p> <p>Our results support that the <it>S. meliloti </it>RNA chaperone Hfq contributes to the control of central metabolic pathways in free-living bacteria and influences rhizospheric competence, survival of the microsymbiont within the nodule cells and nitrogen fixation during the symbiotic interaction with its legume host alfalfa. The identified <it>S. meliloti </it>Hfq-binding sRNAs are predicted to participate in the Hfq regulatory network.</p
    corecore