1,065 research outputs found

    Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector

    Full text link
    Cosmic rays extensive air showers (EAS) are associated with transient radio emission, which could provide an efficient new detection method of high energy cosmic rays, combining a calorimetric measurement with a high duty cycle. The CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is investigating this phenomenon in the 10^17 eV region. One challenging point is the understanding of the radio emission mechanism. A first observation indicating a linear relation between the electric field produced and the cross product of the shower axis with the geomagnetic field direction has been presented (B. Revenu, this conference). We will present here other strong evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde

    Fully Parallel Hyperparameter Search: Reshaped Space-Filling

    Full text link
    Space-filling designs such as scrambled-Hammersley, Latin Hypercube Sampling and Jittered Sampling have been proposed for fully parallel hyperparameter search, and were shown to be more effective than random or grid search. In this paper, we show that these designs only improve over random search by a constant factor. In contrast, we introduce a new approach based on reshaping the search distribution, which leads to substantial gains over random search, both theoretically and empirically. We propose two flavors of reshaping. First, when the distribution of the optimum is some known P0P_0, we propose Recentering, which uses as search distribution a modified version of P0P_0 tightened closer to the center of the domain, in a dimension-dependent and budget-dependent manner. Second, we show that in a wide range of experiments with P0P_0 unknown, using a proposed Cauchy transformation, which simultaneously has a heavier tail (for unbounded hyperparameters) and is closer to the boundaries (for bounded hyperparameters), leads to improved performances. Besides artificial experiments and simple real world tests on clustering or Salmon mappings, we check our proposed methods on expensive artificial intelligence tasks such as attend/infer/repeat, video next frame segmentation forecasting and progressive generative adversarial networks

    Analyse des délais de prise en charge des cancers thoraciques : étude prospective

    Get PDF
    RĂ©sumĂ©IntroductionLe cancer broncho-pulmonaire est la premiĂšre cause de dĂ©cĂšs par cancer en France. Son diagnostic est le plus souvent tardif, alors que le dĂ©lai entre le dĂ©but des symptĂŽmes et la prise en charge est considĂ©rĂ© comme un facteur aggravant.MatĂ©riel et mĂ©thodesNotre Ă©tude prospective a recueilli les diffĂ©rentes dates de prise en charge de 139 patients consĂ©cutifs bĂ©nĂ©ficiant d’un traitement primaire pour un cancer thoracique dans notre hĂŽpital entre novembre 2008 et mai 2009. L’objectif de cette Ă©tude Ă©tait d’évaluer diffĂ©rents dĂ©lais de prise en charge des patients porteurs d’un cancer thoracique quelle que soit sa prise en charge thĂ©rapeutique (mĂ©dicale ou chirurgicale) et de dĂ©terminer la cause de ces dĂ©lais.RĂ©sultatsLe dĂ©lai mĂ©dian entre la premiĂšre imagerie pathologique et le traitement est de 9,6 semaines. Les dĂ©lais Ă©taient significativement plus courts dans les stades tardifs et les carcinomes Ă  petites cellules (p=0,001). Il existait une tendance Ă  des dĂ©lais plus courts pour les femmes et des dĂ©lais plus longs pour les classes d’ñge les plus Ă©levĂ©es.ConclusionL’évaluation des dĂ©lais de prise en charge, en particulier pour les stades prĂ©coces, s’intĂšgre dans le contrĂŽle de la qualitĂ© de prise en charge de ces pathologies.SummaryIntroductionLung cancer is the main cause of cancer death in France. The diagnosis is often late and the delay between the onset of symptoms and management is considered an aggravating factor.Material and methodsOur prospective study collected the dates of the start of management of 139 consecutive patients receiving first line treatment for thoracic cancer in our hospital between November 2008 and May 2009. The aim of this study was to evaluate the delays in medical or surgical treatments in patients with thoracic cancer and to determine the cause of these delays.ResultsThe median delay between the first abnormal chest X-ray and treatment was 9.6 weeks. The delays were significantly shorter in the late stages and in small cell cancer (P=0.001). There was a tendency for shorter delays in women and for longer delays in older patients.ConclusionEvaluation of the delays in treatment, particularly in the early stages, is part of the quality control of management of these diseases

    Integrating agri-environmental indicators, ecosystem services assessment, life cycle assessment and yield gap analysis to assess the environmental sustainability of agriculture

    Get PDF
    Agriculture's primary function is the production of food, feed, fibre and fuel for the fast-growing world population. However, it also affects human health and ecosystem integrity. Policymakers make policies in order to avoid harmful impacts. How to assess such policies is a challenge. In this paper, we propose a conceptual framework to help evaluate the impacts of agricultural policies on the environment. Our framework represents the global system as four subsystems and their interactions. These four components are the cells of a 2 by 2 matrix [Agriculture, Rest of the word]; [Socio-eco system, Ecological system]. We then developed a set of indicators for environmental issues and positioned these issues in the framework. To assess these issues, we used four well-known existing approaches: Life Cycle Assessment, Ecosystem Services Analysis, Yield Gap Analysis and Agro-Environmental Indicators. Using these four approaches together provided a more holistic view of the impacts of a given policy on the system. We then applied our framework on existing cover crop policies using an extensive literature survey and analysing the different environmental issues mobilised by the four assessment approaches. This demonstration case shows that our framework may be of help for a full systemic assessment. Despite their differences (aims, scales, standardization, data requirements, etc.), it is possible and profitable to use the four approaches together. This is a significant step forward, though more work is needed to produce a genuinely operational tool. © 2022 The Author

    Attosecond VUV Coherent Control of Molecular Dynamics

    Full text link
    High harmonic light sources make it possible to access attosecond time-scales, thus opening up the prospect of manipulating electronic wave packets for steering molecular dynamics. However, two decades after the birth of attosecond physics, the concept of attosecond chemistry has not yet been realized. This is because excitation and manipulation of molecular orbitals requires precisely controlled attosecond waveforms in the deep ultraviolet, which have not yet been synthesized. Here, we present a novel approach using attosecond vacuum ultraviolet pulse-trains to coherently excite and control the outcome of a simple chemical reaction in a deuterium molecule in a non-Born Oppenheimer regime. By controlling the interfering pathways of electron wave packets in the excited neutral and singly-ionized molecule, we unambiguously show that we can switch the excited electronic state on attosecond timescales, coherently guide the nuclear wave packets to dictate the way a neutral molecule vibrates, and steer and manipulate the ionization and dissociation channels. Furthermore, through advanced theory, we succeed in rigorously modeling multi-scale electron and nuclear quantum control in a molecule for the first time. The observed richness and complexity of the dynamics, even in this very simplest of molecules, is both remarkable and daunting, and presents intriguing new possibilities for bridging the gap between attosecond physics and attochemistry

    Anomalous diffusion in polymers: long-time behaviour

    Full text link
    We study the Dirichlet boundary value problem for viscoelastic diffusion in polymers. We show that its weak solutions generate a dissipative semiflow. We construct the minimal trajectory attractor and the global attractor for this problem.Comment: 13 page

    Population epigenetic divergence exceeds genetic divergence in the Eastern oyster Crassostrea virginica in the Northern Gulf of Mexico

    Get PDF
    © 2019 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd Populations may respond to environmental heterogeneity via evolutionary divergence or phenotypic plasticity. While evolutionary divergence occurs through DNA sequence differences among populations, plastic divergence among populations may be generated by changes in the epigenome. Here, we present the results of a genome-wide comparison of DNA methylation patterns and genetic structure among four populations of Eastern oyster (Crassostrea virginica) in the northern Gulf of Mexico. We used a combination of restriction site-associated DNA sequencing (RADseq) and reduced representation bisulfite sequencing (RRBS) to explore population structure, gene-wide averages of FST, and DNA methylation differences between oysters inhabiting four estuaries with unique salinity profiles. This approach identified significant population structure despite a moderately low FST (0.02) across the freshwater boundary of the Mississippi river, a finding that may reflect recent efforts to restore oyster stock populations. Divergence between populations in CpG methylation was greater than for divergence in FST, likely reflecting environmental effects on DNA methylation patterns. Assessment of CpG methylation patterns across all populations identified that only 26% of methylated DNA was intergenic; and, only 17% of all differentially methylated regions (DMRs) were within these same regions. DMRs within gene bodies between sites were associated with genes known to be involved in DNA damage repair, ion transport, and reproductive timing. Finally, when assessing the correlation between genomic variation and DNA methylation between these populations, we observed population-specific DNA methylation profiles that were not directly associated with single nucleotide polymorphisms or broader gene-body mean FST trends. Our results suggest that C. virginica may use DNA methylation to generate environmentally responsive plastic phenotypes and that there is more divergence in methylation than divergence in allele frequencies

    Toward Improving Safety in Neurosurgery with an Active Handheld Instrument

    Get PDF
    Microsurgical procedures, such as petroclival meningioma resection, require careful surgical actions in order to remove tumor tissue, while avoiding brain and vessel damaging. Such procedures are currently performed under microscope magnification. Robotic tools are emerging in order to filter surgeons’ unintended movements and prevent tools from entering forbidden regions such as vascular structures. The present work investigates the use of a handheld robotic tool (Micron) to automate vessel avoidance in microsurgery. In particular, we focused on vessel segmentation, implementing a deep-learning-based segmentation strategy in microscopy images, and its integration with a feature-based passive 3D reconstruction algorithm to obtain accurate and robust vessel position. We then implemented a virtual-fixture-based strategy to control the handheld robotic tool and perform vessel avoidance. Clay vascular phantoms, lying on a background obtained from microscopy images recorded during petroclival meningioma surgery, were used for testing the segmentation and control algorithms. When testing the segmentation algorithm on 100 different phantom images, a median Dice similarity coefficient equal to 0.96 was achieved. A set of 25 Micron trials of 80 s in duration, each involving the interaction of Micron with a different vascular phantom, were recorded, with a safety distance equal to 2 mm, which was comparable to the median vessel diameter. Micron’s tip entered the forbidden region 24% of the time when the control algorithm was active. However, the median penetration depth was 16.9 ÎŒm, which was two orders of magnitude lower than median vessel diameter. Results suggest the system can assist surgeons in performing safe vessel avoidance during neurosurgical procedures

    Observation of Spontaneous Brillouin Cooling

    Full text link
    While radiation-pressure cooling is well known, the Brillouin scattering of light from sound is considered an acousto-optical amplification-only process. It was suggested that cooling could be possible in multi-resonance Brillouin systems when phonons experience lower damping than light. However, this regime was not accessible in traditional Brillouin systems since backscattering enforces high acoustical frequencies associated with high mechanical damping. Recently, forward Brillouin scattering in microcavities has allowed access to low-frequency acoustical modes where mechanical dissipation is lower than optical dissipation, in accordance with the requirements for cooling. Here we experimentally demonstrate cooling via such a forward Brillouin process in a microresonator. We show two regimes of operation for the Brillouin process: acoustical amplification as is traditional, but also for the first time, a Brillouin cooling regime. Cooling is mediated by an optical pump, and scattered light, that beat and electrostrictively attenuate the Brownian motion of the mechanical mode.Comment: Supplementary material include
    • 

    corecore