120 research outputs found

    Spatial information systems in managing public transport information

    Get PDF
    Traffic congestion is one of the major problems plaguing urban cities all over the world today. With traffic congestion, goods and services experience delays in accessing markets and employees are late for work. This results in reduced production. At the same time, idling vehicles waste fuel and cause air pollution. This situation is the same in South Africa, where millions of rand are lost each year on congestion costs (CERF 1999). Studies carried out in Cape Town, South Africa, project that if no immediate action is taken to reduce traffic congestion, by the year 2020, the car population will increase by 64%, thereby reducing highway traffic speeds to 29 kilometres per hour (South Africa. National Department of Transport 1999). Worldwide, policies to reduce congestion levels include, among other things, the promotion of public transport (Climate Change 2001; Cullinane and Cullinane 2003). As public transport has a better cost and space effectiveness for transportation of volumes of people, having more people use public transport will lead to a reduction in the number of vehicles on the road. This will, in turn, reduce traffic congestion and its effects (De Saint Laurent 1998)

    Monitoring drinking water quality in South Africa: Designing information systems for local needs

    Get PDF
    In South Africa, the management and monitoring of drinking water quality is governed by policies and regulations based on international standards. Water Service Authorities, which are either municipalities or district municipalities, are required to submit information regarding water quality and the management thereof regularly to the national Blue Drop System (BDS). Since 2009, a trend has emerged in which urban municipalities have been shown to consistently improve their water quality management whilst some of the rural and under-resourced municipalities are falling behind. A major concern has been that rural municipalities are failing to report the required information and are not complying with some of the regulator’s requirements that speak to the overall management of water quality monitoring rather than the actual water quality itself. This paper reflects on a case study undertaken in four rural municipalities in South Africa where a cellphone-based information system was implemented to collect information relevant to the municipality. The study was conducted by the Information for Community Oriented Municipal Services (iCOMMS) research team based at the Department of Civil Engineering at the University of Cape Town. The hypothesis for the research was that improved information flow within rural municipalities – from water supplies in outlying areas to the municipal government office – can improve the efficiency of existing monitoring, if the design, development and implementation of such a system are based on collecting appropriate and locally relevant information. Water service authorities at the four field sites managed the process of monitoring in very different ways due to limited resources as well as structural challenges within each government department. The variety of stakeholders involved in water quality monitoring programmes, and the alternative methods and processes used, challenges the current understanding of information system design as well as the notion of developing a single national information system. The decentralisation of national water quality monitoring to municipal level was assessed in this research, which concluded that the BDS was of limited usefulness to water quality monitoring in the rural municipalities partaking in this research.Keywords: water quality monitoring, information management, Blue Drop System, decentralisation, rural municipalitie

    The utility of pharmacy dispensing data for ART programme evaluation and early identification of patient loss to follow-up

    Get PDF
    No abstract Southern African Journal of HIV Medicine Vol. 9 (2) 2008: pp. 44-4

    Proteasome Particle-Rich Structures Are Widely Present in Human Epithelial Neoplasms: Correlative Light, Confocal and Electron Microscopy Study

    Get PDF
    A novel cytoplasmic structure has been recently characterized by confocal and electron microscopy in H. pylori-infected human gastric epithelium, as an accumulation of barrel-like proteasome reactive particles colocalized with polyubiquitinated proteins, H. pylori toxins and the NOD1 receptor. This proteasome particle-rich cytoplasmic structure (PaCS), a sort of focal proteasome hyperplasia, was also detected in dysplastic cells and was found to be enriched in SHP2 and ERK proteins, known to play a role in H. pylori-mediated gastric carcinogenesis. However, no information is available on its occurrence in neoplastic growths. In this study, surgical specimens of gastric cancer and various other human epithelial neoplasms have been investigated for PaCSs by light, confocal and electron microscopy including correlative confocal and electron microscopy (CCEM). PaCSs were detected in gastric cohesive, pulmonary large cell and bronchioloalveolar, thyroid papillary, parotid gland, hepatocellular, ovarian serous papillary, uterine cervix and colon adenocarcinomas, as well as in pancreatic serous microcystic adenoma. H. pylori bodies, their virulence factors (VacA, CagA, urease, and outer membrane proteins) and the NOD1 bacterial proteoglycan receptor were selectively concentrated inside gastric cancer PaCSs, but not in PaCSs from other neoplasms which did, however, retain proteasome and polyubiquitinated proteins reactivity. No evidence of actual microbial infection was obtained in most PaCS-positive neoplasms, except for H. pylori in gastric cancer and capsulated bacteria in a colon cancer case. Particle lysis and loss of proteasome distinctive immunoreactivities were seen in some tumour cell PaCSs, possibly ending in sequestosomes or autophagic bodies. It is concluded that PaCSs are widely represented in human neoplasms and that both non-infectious and infectious factors activating the ubiquitin-proteasome system are likely to be involved in their origin. PaCS detection might help clarify the role of the ubiquitin-proteasome system in carcinogenesis

    Changes in global groundwater organic carbon driven by climate change and urbanization

    Get PDF
    YesClimate change and urbanization can increase pressures on groundwater resources, but little is known about how groundwater quality will change. Here, we rely on a global synthesis (n = 9,404) to reveal the drivers of dissolved organic carbon (DOC), which is an important component of water chemistry and substrate for microorganisms which control many biogeochemical reactions. Groundwater ions, local climate and land use explained ~ 31% of observed variability in groundwater DOC, whilst aquifer age explained an additional 16%. We identify a 19% increase in DOC associated with urban land cover. We predict major groundwater DOC increases following changes in precipitation and temperature in key areas relying on groundwater. Climate change and conversion of natural or agricultural areas to urban areas will decrease groundwater quality and increase water treatment costs, compounding existing threats to groundwater resources

    Dissimilar responses of fungal and bacterial communities to soil transplantation simulating abrupt climate changes.

    Get PDF
    Both fungi and bacteria play essential roles in regulating soil carbon cycling. To predict future carbon stability, it is imperative to understand their responses to environmental changes, which is subject to large uncertainty. As current global warming is causing range shifts toward higher latitudes, we conducted three reciprocal soil transplantation experiments over large transects in 2005 to simulate abrupt climate changes. Six years after soil transplantation, fungal biomass of transplanted soils showed a general pattern of changes from donor sites to destination, which were more obvious in bare fallow soils than in maize cropped soils. Strikingly, fungal community compositions were clustered by sites, demonstrating that fungi of transplanted soils acclimatized to the destination environment. Several fungal taxa displayed sharp changes in relative abundance, including Podospora, Chaetomium, Mortierella and Phialemonium. In contrast, bacterial communities remained largely unchanged. Consistent with the important role of fungi in affecting soil carbon cycling, 8.1%-10.0% of fungal genes encoding carbon-decomposing enzymes were significantly (p < 0.01) increased as compared with those from bacteria (5.7%-8.4%). To explain these observations, we found that fungal occupancy across samples was mainly determined by annual average air temperature and rainfall, whereas bacterial occupancy was more closely related to soil conditions, which remained stable 6 years after soil transplantation. Together, these results demonstrate dissimilar response patterns and resource partitioning between fungi and bacteria, which may have considerable consequences for ecosystem-scale carbon cycling

    Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    No full text
    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to ~1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability (K~10−1–100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K~10−2 m/day at 150–400 m BGL to 10−3 m/day down-dip at ~1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs (~0.7–1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields

    Ovarian cancer molecular pathology.

    Full text link
    Peer reviewe
    corecore