1,085 research outputs found
Advancement in the understanding of multifragmentation and phase transition for hot nuclei
Recent advancement on the knowledge of multifragmentation and phase
transition for hot nuclei is reported. It concerns i) the influence of radial
collective energy on fragment partitions and the derivation of general
properties of partitions in presence of such a collective energy, ii) a better
knowledge of freeze-out properties obtained by means of a simulation based on
all the available experimental information and iii) the quantitative study of
the bimodal behaviour of the heaviest fragment charge distribution for
fragmenting hot heavy quasi-projectiles which allows, for the first time, to
estimate the latent heat of the phase transition.Comment: 9 pages, Proceedings of IWM09, November 4-7, Catania (Italy
Freeze-out volume in multifragmentation - dynamical simulations
Stochastic mean-field simulations for multifragmenting sources at the same
excitation energy per nucleon have been performed. The freeze-out volume, a
concept which needs to be precisely defined in this dynamical approach, was
shown to increase as a function of three parameters: freeze-out instant,
fragment multiplicity and system size.Comment: Submitted to Eur. Phys. J. A - march 200
Lumican inhibits in vivo melanoma metastasis by altering matrix-effectors and invadopodia markers
It was reported that lumican inhibits the activity of metalloproteinase MMP-14 and melanoma cell migration in vitro and in vivo. Moreover, Snail triggers epithelial-to-mesenchymal transition and the metastatic potential of cancer cells. Therefore, the aim of this study was to examine the effect of lumican on Mock and Snail overexpressing melanoma B16F1 cells in vivo. Lung metastasis was analyzed after intravenous injections of Mock-B16F1 and Snail-B16F1 cells in Lum+/+ and Lumâ/â mice. At day 14, mice were sacrificed, and lungs were collected. The number of lung metastatic nodules was significantly higher in mice injected with Snail-B16F1 cells as compared to mice injected with Mock-B16F1 cells confirming the pro-metastatic effect of Snail. This effect was stronger in Lumâ/â mice as compared to Lum+/+, suggesting that endogenous lumican of wild-type mice significantly inhibits metastasis to lungs. Scanning electron and confocal microscopy investi-gations demonstrated that lumican inhibits the development of elongated cancer cell phenotypes which are known to develop invadopodia releasing MMPs. Moreover, lumican was shown to affect the expression of cyclin D1, cortactin, vinculin, hyaluronan synthase 2, heparanase, MMP-14 and the phosphorylation of FAK, AKT, p130 Cas and GSK3α/ÎČ. Altogether, these data demonstrated that lumican significantly inhibits lung metastasis in vivo, as well as cell invasion in vitro, suggesting that a lumican-based strategy targeting Snail-induced metastasis could be useful for melanoma treatment
New approach of fragment charge correlations in 129Xe+(nat)Sn central collisions
A previous analysis of the charge (Z) correlations in the
plane for Xe+Sn central collisions at 32 MeV/u has shown an enhancement in the
production of equally sized fragments (low ) which was interpreted as
an evidence for spinodal decomposition. However the signal is weak and rises
the question of the estimation of the uncorrelated yield. After a critical
analysis of its robustness, we propose in this paper a new technique to build
the uncorrelated yield in the charge correlation function. The application of
this method to Xe+Sn central collision data at 32, 39, 45 and 50 MeV/u does not
show any particular enhancement of the correlation function in any
bin.Comment: 23 pages, 9 figures, revised version with an added figure and minor
changes. To appear in Nuclear Physics
Stopping of energetic sulfur and bromine ions in dense hydrogen plasma
The concepts of communicative space, media sphere and public sphere are sometimes used like synonyms one of the other. However, according to us, they are three different concepts: public sphere and media sphere are two distinct spaces symbolic systems which, both, are anchored in communicative spac
Coupling of thermal and mass diffusion in regular binary thermal lattice-gases
We have constructed a regular binary thermal lattice-gas in which the thermal
diffusion and mass diffusion are coupled and form two nonpropagating diffusive
modes. The power spectrum is shown to be similar in structure as for the one in
real fluids, in which the central peak becomes a combination of coupled entropy
and concentration contributions. Our theoretical findings for the power spectra
are confirmed by computer simulations performed on this model.Comment: 5 pages including 3 figures in RevTex
Use of Bimodal Coherence to Resolve Spectral Indeterminacy in Convolutive BSS
Recent studies show that visual information contained in visual speech can be helpful for the performance enhancement of audio-only blind source separation (BSS) algorithms. Such information is exploited through the statistical characterisation of the coherence between the audio and visual speech using, e.g. a Gaussian mixture model (GMM). In this paper, we present two new contributions. An adapted expectation maximization (AEM) algorithm is proposed in the training process to model the audio-visual coherence upon the extracted features. The coherence is exploited to solve the permutation problem in the frequency domain using a new sorting scheme. We test our algorithm on the XM2VTS multimodal database. The experimental results show that our proposed algorithm outperforms traditional audio-only BSS
Isospin diffusion in semi-peripheral + collisions at intermediate energies (I): Experimental results
Isospin diffusion in semi-peripheral collisions is probed as a function of
the dissipated energy by studying two systems + and
+ , over the incident energy range 52-74\AM. A close
examination of the multiplicities of light products in the forward part of
phase space clearly shows an influence of the isospin of the target on the
neutron richness of these products. A progressive isospin diffusion is observed
when collisions become more central, in connection with the interaction time
Fluctuating lattice Boltzmann
The lattice Boltzmann algorithm efficiently simulates the Navier Stokes
equation of isothermal fluid flow, but ignores thermal fluctuations of the
fluid, important in mesoscopic flows. We show how to adapt the algorithm to
include noise, satisfying a fluctuation-dissipation theorem (FDT) directly at
lattice level: this gives correct fluctuations for mass and momentum densities,
and for stresses, at all wavevectors . Unlike previous work, which recovers
FDT only as , our algorithm offers full statistical mechanical
consistency in mesoscale simulations of, e.g., fluctuating colloidal
hydrodynamics.Comment: 7 pages, 3 figures, to appear in Europhysics Letter
- âŠ