37 research outputs found

    Estructura y función de la unidad fundamental de replicación del DNA (el replicón) en eucariontes

    Get PDF
    La replicación del dna es indispensable para la transmisión de la información genética y permite copiar el genoma con gran exactitud. Desde el siglo pasado se propuso el modelo del replicón para explicar el mecanismo general de duplicación del genoma en bacterias. Estudios posteriores en la levadura permitieron identificar proteínas y secuencias de dna que participan en el inicio de la replicación en forma similar a lo descrito en procariontes, esto condujo a intentar generalizar el modelo del replicón a los eucariontes. Se han descrito algunos factores clave en el proceso de replicación que están conservados desde la levadura hasta el humano. Sin embargo, todavía no se comprende cómo se determinan los sitios de inicio de la replicación y cuál es la estructura del replicón en los metazoarios. En este artículo se sugiere que la organización topológica del dna en el núcleo celular determina la estructura y función de los replicones en los eucariontes superiores

    DNA moves sequentially towards the nuclear matrix during DNA replication in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the interphase nucleus of metazoan cells DNA is organized in supercoiled loops anchored to a nuclear matrix (NM). There is varied evidence indicating that DNA replication occurs in replication factories organized upon the NM and that DNA loops may correspond to the actual replicons in vivo. In normal rat liver the hepatocytes are arrested in G0 but they synchronously re-enter the cell cycle after partial-hepatectomy leading to liver regeneration in vivo. We have previously determined in quiescent rat hepatocytes that a 162 kbp genomic region containing members of the albumin gene family is organized into five structural DNA loops.</p> <p>Results</p> <p>In the present work we tracked down the movement relative to the NM of DNA sequences located at different points within such five structural DNA loops during the S phase and after the return to cellular quiescence during liver regeneration. Our results indicate that looped DNA moves sequentially towards the NM during replication and then returns to its original position in newly quiescent cells, once the liver regeneration has been achieved.</p> <p>Conclusions</p> <p>Looped DNA moves in a sequential fashion, as if reeled in, towards the NM during DNA replication in vivo thus supporting the notion that the DNA template is pulled progressively towards the replication factories on the NM so as to be replicated. These results provide further evidence that the structural DNA loops correspond to the actual replicons in vivo.</p

    Expanded encyclopaedias of DNA elements in the human and mouse genomes

    Get PDF
    All data are available on the ENCODE data portal: www.encodeproject. org. All code is available on GitHub from the links provided in the methods section. Code related to the Registry of cCREs can be found at https:// github.com/weng-lab/ENCODE-cCREs. Code related to SCREEN can be found at https://github.com/weng-lab/SCREEN.© The Author(s) 2020. The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.This work was supported by grants from the NIH under U01HG007019, U01HG007033, U01HG007036, U01HG007037, U41HG006992, U41HG006993, U41HG006994, U41HG006995, U41HG006996, U41HG006997, U41HG006998, U41HG006999, U41HG007000, U41HG007001, U41HG007002, U41HG007003, U54HG006991, U54HG006997, U54HG006998, U54HG007004, U54HG007005, U54HG007010 and UM1HG009442

    Estructura y función de la unidad fundamental de replicación del DNA (el replicón) en eucariontes

    No full text
    DNA replication is necessary for the transmission of genetic information and thus such a process must achieve accurate copying of the genome. Since the last century the replicon model has been proposed in order to explain the general mechanism of genome duplication in bacteria. Later work in yeast lead to identifying proteins and DNA sequences that participate in the initiation of replication in a similar fashion to what has been observed in prokaryotes. This led to attempts for generalizing the replicon model to eukaryotes. Several key factors involved in replication and conserved from yeast to man have been described to date. However, as yet, it is not understood how are determined the sites for the start of replication nor the structure of actual replicons in metazoans. In this article it is suggested that the topological organization of DNA within the cell nucleus determines the structure and function of replicons in higher eukaryotes.La replicación del DNA es indispensable para la transmisión de la información genética y permite copiar el genoma con gran exactitud. Desde el siglo pasado se propuso el modelo del replicón para explicar el mecanismo general de duplicación del genoma en bacterias. Estudios posteriores en la levadura permitieron identificar proteínas y secuencias de DNA que participan en el inicio de la replicación en forma similar a lo descrito en procariontes, esto condujo a intentar generalizar el modelo del replicón a los eucariontes. Se han descrito algunos factores clave en el proceso de replicación que están conservados desde la levadura hasta el humano. Sin embargo, todavía no se comprende cómo se determinan los sitios de inicio de la replicación y cuál es la estructura del replicón en los metazoarios. En este artículo se sugiere que la organización topológica del DNA en el núcleo celular determina la estructura y función de los replicones en los eucariontes superiores

    Estructura y función de la unidad fundamental de replicación del DNA (el replicón) en eucariontes

    No full text
    La replicación del dna es indispensable para la transmisión de la información genética y permite copiar el genoma con gran exactitud. Desde el siglo pasado se propuso el modelo del replicón para explicar el mecanismo general de duplicación del genoma en bacterias. Estudios posteriores en la levadura permitieron identificar proteínas y secuencias de dna que participan en el inicio de la replicación en forma similar a lo descrito en procariontes, esto condujo a intentar generalizar el modelo del replicón a los eucariontes. Se han descrito algunos factores clave en el proceso de replicación que están conservados desde la levadura hasta el humano. Sin embargo, todavía no se comprende cómo se determinan los sitios de inicio de la replicación y cuál es la estructura del replicón en los metazoarios. En este artículo se sugiere que la organización topológica del dna en el núcleo celular determina la estructura y función de los replicones en los eucariontes superiores

    Stage-Matching of Human, Marmoset, Mouse, and Pig Embryos to Enhance Organ Development Through Interspecies Chimerism

    No full text
    Currently, there is a significant shortage of transplantable organs for patients in need. Interspecies chimerism and blastocyst complementation are alternatives for generating transplantable human organs in host animals such as pigs to meet this shortage. While successful interspecies chimerism and organ generation have been observed between evolutionarily close species such as rat and mouse, barriers still exist for more distant species pairs such as human–mouse, marmoset–mouse, human–pig, and others. One of the proposed barriers to chimerism is the difference in developmental stages between the donor cells and the host embryo at the time the cells are introduced into the host embryo. Hence, there is a logical effort to stage-match the donor cells with the host embryos for enhancing interspecies chimerism. In this study, we used an in silico approach to simultaneously stage-match the early developing embryos of four species, including human, marmoset, mouse, and pig based on transcriptome similarities. We used an unsupervised clustering algorithm to simultaneously stage-match all four species as well as Spearman’s correlation analyses to stage-match pairs of donor–host species. From our stage-matching analyses, we found that the four stages that best matched with each other are the human blastocyst (E6/E7), the gastrulating mouse embryo (E6–E6.75), the marmoset late inner cell mass, and the pig late blastocyst. We further demonstrated that human pluripotent stem cells best matched with the mouse post-implantation stages. We also performed ontology analysis of the genes upregulated and commonly expressed between donor–host species pairs at their best matched stages. The stage-matching results predicted by this study will inform in vivo and in vitro interspecies chimerism and blastocyst complementation studies and can be used to match donor cells with host embryos between multiple species pairs to enhance chimerism for organogenesis

    3D genome organization contributes to genome instability at fragile sites

    No full text
    Common fragile sites are regions susceptible to replication stress and are prone to chromosomal instability. Here, the authors, by analyzing the contribution of 3D chromatin organization, identify and characterize a fragility signature and precisely map these fragility regions

    Allele-specific control of replication timing and genome organization during development

    No full text
    DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus × castaneus mouse crosses and exploited the high single-nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq), and chromatin accessibility (ATAC-seq). We also present HARP, a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv, and CAST/Ei), parental configurations, and gender revealed significant RT asynchrony between alleles across ∼12% of the autosomal genome linked to subspecies genomes but not to parental origin, growth conditions, or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not as strongly with SNP density, gene expression, imprinting, or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types, including extraembryonic endoderm stem (XEN) cells, four male and female primary mouse embryonic fibroblasts (MEFs), and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs were largely lost in all differentiated cell types, accompanied by novel sites of allelic asynchrony at a considerably smaller proportion of the genome, suggesting that genome organization of homologs converges to similar folding patterns during cell fate commitment
    corecore