96 research outputs found

    Environment Control with Low-Cost Microcontrollers and Microprocessors: Application for GreenWalls

    Get PDF
    Green wall irrigation procedures are a particularly important and hard task, given that the quality of the green wall depends on them. There is currently a wide variety of irrigation programmers available, with a range of functions and prices, thereby replacing manual activities and making it easier to maintain green walls. This paper proposes the use of low-cost automated irrigation programmers via a freeware called Arduino. The system is based on air and substrate measurements to ensure optimal plant growth and high water-use efficiency. At certain thresholds, the irrigation system is activated. This not only makes irrigation more convenient but also helps to reduce energy consumption, increases irrigation efficiency and saves time. The data is then sent via Transmission Control Protocol using Internet of Things technology, in this case ThingSpeak. The platform compiles the data and presents them in simple graphical format, thus enabling real-time monitoring from wherever there is Internet access. Together with Arduino, the project incorporates the Raspberry pi system that operates like a database via Hypertext Transfer Protocol Wi-Fi received by a Structured Query Language (MySQL) server using Hypertext Preprocessor. These data are used for the subsequent analysis of green wall performance

    Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection

    Get PDF
    New high performance liquid chromatography (HPLC) conditions were developed for the separation of strawberry anthocyanins that provided a good resolution of peaks at a low flow rate compatible with the requirements of the mass spectrometry (MS) detector. A strawberry extract was fractionated by column chromatography and simple fractions containing basically anthocyanins were obtained, making their analysis by HPLC possible using on-line photodiode array detection and MS. Information on the identity of the major and some secondary anthocyanins in strawberry was obtained froth their retention characteristics, UV-visible spectra and mass spectra. The presence in strawberry of the previously reported cyanidin 3-glucoside, pelargonidin 3-glucoside, pelargonidin 3-rutinoside and pelargonidin 3-acetylglucoside was confirmed and cyanidin 3-rutinoside was identified in strawberry for the first time. Furthermore, cyanidin 3-malonyldiglucoside, pelargonidin 3-malylglucoside, a pelargonidin bioside and two possible pelargonidin 3-biosides acylated with acetic acid were also tentatively assigned.Comissão Europeia (Fundo Social Europeu) e Governo Português através do Programa PRODEP (III) - ref.ª 5.3/N/199.006/00-Doutoramento

    Anthocyanin composition and related pigments in strawberry

    Get PDF
    The anthocyanin composition of the strawberry has been object of various studies, but it is still not fully characterized. It is well known the presence af pelarganidin 3 - glucoside (Pg 3 -gluc) as major anthocyanin, usually accompanied of smaller proportions of pelargonidin 3- rutinoside (Pg 3 -rut) and cyanidin 3-glucosid e (Cy. 3- gluc).Comissão Europeia (Fundo Social Europeu) e Governo Português através do Programa PRODEP (III) - ref.ª 5.3/N/199.006/00-Doutoramento

    Anthocyanin pigments in strawberry

    Get PDF
    The anthocyanin composition was analysed in strawberry fruits from five different cultivars (cv. Eris, Oso Grande, Carisma, Tudnew and Camarosa). Twenty-five defined anthocyanin pigments were detected, most of them containing Pelargonidin (Pg) as aglycone; some cyanidin (Cy) derivatives were also found. Glucose and rutinose were the usual substituting sugars, although arabinose and rhamnose were also tentatively identified; some minor anthocyanins showed acylation with aliphatic acids. A relevant aspect was the detection of anthocyanin-derived pigments, namely 5-carboxypyranopelargonidin-3-glucoside and four condensed pigments containing C–C linked anthocyanin (Pg) and flavanol (catechin and afzelechin) residues. Total anthocyanin content ranged between 200 and 600mg/kg, with Pg 3-gluc constituting 77–90% of the anthocyanins in the strawberry extracts followed by Pg 3-rut (6–11%) and Cy 3-gluc (3–10%). A notable variability was found among the anthocyanin concentrations in samples of a same variety and harvest, indicating a strongly influence of the degree of maturity, edaphic-climatic factors and post-harvest storage

    Improvement in the retention and distribution of water in green walls using alternative materials as a growing media

    Get PDF
    [EN] This work shows how coconut fiber mixed with rice husk is useful as a growing medium in green walls, reducing the environmental impact of the Sphagnum moss exploitation in the long term. For this, a prototype of green walls was designed to analyze the difference between both substrates. The runoff and the water retention of the substrates were analyzed by flow and humidity sensors. The substrate composed of rice husk and coconut fiber showed greater homogeneity in the distribution of irrigation water than Sphagnum moss. The chlorophyll analyzes showed statistically significant differences between the plant material planted in the coconut fiber substrate and rice husk than in the Sphagnum, but no differences were found in biomass and water content.[ES] Este trabajo muestra como la fibra de coco mezclada con cascarilla de arroz es útil como medio de cultivo en muros verdes, reduciendo el impacto ambiental de la explotación de musgo Sphagnum a largo plazo. Por esto, se diseñó un prototipo de muros verdes para analizar la diferencia entre ambos sustratos. La escorrentía y la retención hídrica de los sustratos se analizaron mediante sensores de flujo y humedad. El sustrato compuesto de cascarilla de arroz y fibra de coco mostró mayor homogeneidad en la distribución del agua de riego que el musgo Sphagnum. Los análisis de clorofila mostraron diferencias estadísticamente significativas entre el material vegetal plantado en el sustrato de fibra de coco y cascarilla de arroz y en el de Sphagnum, pero no se encontraron diferencias en biomasa y en el contenido hídrico.Esta investigación está soportada con fondos propios de la línea de investigación “Sostenibilidad de Recursos Naturales” integrada en el Programa de Doctorado “Recursos Naturales y Gestión Sostenible” de la Universidad de Córdoba.Se agradece a María Benlloch González y a Manuel Benlloch Marín, profesores del área de producción vegetal de la Universidad de Córdoba, la colaboración prestada en loa ensayos de laboratorio.Rivas-Sanchez, Y.; Moreno-Pérez, M.; Roldán-Cañas, J. (2019). Mejora en la retención y distribución de agua en muros verdes usando materiales alternativos como medio de crecimiento. Ingeniería del Agua. 23(1):19-31. https://doi.org/10.4995/ia.2019.9736SWORD1931231Artero, T. O. 2016. El mundo Genuino-Arduino: Curso práctico de formación, RC libros, Madrid.Banzi, M, Shiloh, M. (2016). Introducción a Arduino, O'Reilly media, Grupo Anaya s.a. Madrid.Egea G, Pérez-Urrestarazu L., González-Pérez J, Franco-Salas A, Fernández-Cañero R. 2014. Lighting systems evaluation for indoor living walls, Urban Forestry & Urban Greening, 13, 475-483.Emilsson T. 2008. Vegetation development on extensive vegetated green roofs: influenceof substrate composition, establishment method and species mix, Ecological Engineering, 33 (3-4) 265-277.FLL. 2002. Richtlinie für die Planung, Ausführung und Pflege von Dachbegrünun-gen. Forschungsgesellschaft Landschaftsentwicklung. Landschaftsbau e.V, ISBN:393448459x, pp. 99.Francis A, Lorimer J. 2011. Urban reconciliation ecology: The potential of living roofs and walls, Journal of environmental management 92 (6), 1429-1437.Hansmann, E. 1973. Pigment Analysis. In Handbook of Phycological Methods: Culture Methods and Growth Measurements; Stein, J.R., Ed.; Cambridge University Press: London, UK. Vol. 1, pp. 359-368.Holman J, Bugbee B, Chard J. 2005. A Comparison of Coconut Coir and Sphagnum Peat as Soilless Media Components for Plant Growth, Utah State Univ, Department of Plants, Soils, and Biometeorology.Jørgensen L, Dresbøll DB, Thorup-Kristensen K. 2014. Root growth of perennials in vertical growing media for use in green walls, Scientia Horticulturae 166, 31-41.Larcher F, Fornaris A, Devecchi M. 2013. New Substrates for Living Walls, III International conference on landscape and urban horticulture, Acta Horticulturae, V: 999, 277-281.Manso M, Castro-Gomes J. 2015. Green wall systems: A review of their characteristics, Renewable and Sustainable Energy Reviews, 41, issue C, p. 863-871.Mickovski S, Buss K, McKenzie B, Sökmener B. 2013. Laboratory study on the potential use of recycled inert construction waste material in the substrate mix for extensive green roofs, Ecological Engineering, 61C, 706-714.Molineux C, Fentiman C, Gange A. 2009. Characterising alternative recycled waste materials for use as green roof growing media in the U.K, Ecological Engineering., 35 (10), 1507-1513.Ottelé M, Perini K, Fraaij LA, Haas EM, Raiteri R. 2011. Comparative life cycle analysis for green façades and living wall systems, Energy and Buildings 43 (12), 3419-3429.Perini K, Rosasco P. 2013. Cost-benefit analysis for green façades and living wall systems, Building and Environment 70, 110-121.Rivas Y, Moreno-Pérez, M.F, Roldán-Cañas, J. 2017a. Use of the rice husk as an alternative substrate for growing media on green walls drip irrigation. European Geosciences Union General Assembly 2017, 23-28 April, Vienna, Austria, EGU2017-4604.Rivas Y, Moreno-Pérez, M.F, Roldán-Cañas, J. 2017b. Puesta en marcha de un sistema inteligente de riego por goteo para muros verdes con el uso de microcontroladores y microprocesadores. XXXV Congreso Nacional de Riegos, Tarragona, España, DOI: http//dx.doi.org/10.25028/CNRiegos.2017.B05 B-05.Rose R, Haase D. 2000. The use of coir as a containerized growing medium for Douglas fir seedlings. Native Plants Journal, 2: 107-111.Safikhani, Tabassom, Abdullah, Aminatuzuhariah Megat, Ossen, Dilshan Remaz and Baharvand, Mohammad. 2014. A review of energy characteristic of vertical greenery systems, Renewable and Sustainable Energy Reviews, 40, issue C, p. 450-462.Samuelsson, R., Burvall, J., Jirjis, R. 2006. Comparison of different methods for the determination of moisture content in biomass, Biomass & Bioenergy, 30(11), 929-934. https://doi.org/10.1016/j.biombioe.2006.06.004Taiz, L. and Zeiger, E. 2006. Plant physiology. 4th Edition, Sinauer Associates, Inc., Sunderland.Ustin, S.L., Smith, M.O., Jacquemoud, S., Verstraete, M.M., y Govaerts, Y. 1998. GeoBotany: Vegetation mapping for Earth sciences, in Manual of Remote Sensing, Remote Sensing for the Earth Sciences, edited by A. N. Rencz, 3rd ed., John Wiley, Hoboken, N. J. 3:189248.Vijayaraghavan K, Raja F. 2014. Design and development of green roof substrate to improve runoff water quality: plant growth experiments and adsorption, Water Research., 63, 94-101

    Evaluation of two models using CERES data for reference evapotranspiration estimation

    Get PDF
    [EN] Evapotranspiration is the most important variable in the Pampas plain. Information provided by sensors onboard satellite missions allows represent the spatial and temporal variability of evapotranspiration, which cannot be achieved using only measurements of weather stations. In this work, the Priestley and Taylor (PT) and FAO Penman Monteith (FAO PM) equations were adapted to estimate the reference evapotranspiration, ET0 , using only CERES satellite products (SYN1 and CldTypHist). In order to evaluate the reference evapotranspiration from CERES, a comparison with in situ measurements was conducted. We used ET data provided by the Oficina de Riesgo Agropecuario, corresponding to 24 stations placed in the Pampean Region of Argentina (2001-2016). Results showed very good agreement between the estimates with CERES products and in situ values, with errors between ±0.8 and ±1.1 mm d–1 and r2 greater than 0.75 at daily scale, and errors between ±14 and ±19 mm month–1 and r2 greater than 0.9, at monthly scale better results were obtained with adapted model FAO PM than PT. Finally, ET0 monthly maps for the Pampean Region of Argentina were elaborated, which allowed knowing the temporal-spatial variation in the validation area. In conclusion, the methods presented here are a suitable alternative to estimate the reference evapotranspiration without requiring ground measurements.[ES] La evapotranspiración es la variable hidrológica de mayor relevancia en la llanura pampeana. La información provista por sensores a bordo de satélites permite representar la variabilidad espacio-temporal de la evapotranspiración, lo cual no es posible lograr utilizando únicamente datos de sitios puntuales de medida. En este trabajo se adaptaron las ecuaciones de Priestley y Taylor (PT) y FAO Penman-Monteith (FAO PM) para obtener la evapotranspiración del cultivo de referencia, ET0 , utilizando únicamente datos de los productos de satélite CERES (SYN1 y CldTypHist). Los resultados obtenidos con los datos CERES se compararon con valores de ET0 provistos por la Oficina de Riesgo Agropecuario de Argentina, a partir de información de 24 estaciones agro-meteorológicas distribuidas en la Región Pampeana de Argentina (2001-2016). Los resultados mostraron muy buena concordancia entre los valores generados con los métodos propuestos y aquellos obtenidos in situ, con errores de entre ±0,8 y ±1,1 mm d–1 y r2 superiores a 0,75 a escala diaria, y errores de entre ±14 y ±19 mm mes–1 y r2 superiores a 0,9, a escala mensual, siendo en general mejores los resultados con el método adaptado de FAO PM respecto al de PT. Finalmente, se elaboraron los mapas promedio mensual de la ET0 para la Región Pampeana de Argentina, los cuales permitieron conocer la variación espacio temporal en el área de validación. En conclusión, los métodos que aquí se presentan constituyen una buena alternativa para el cálculo de la evapotranspiración de referencia, sin necesidad de contar con medidas de terreno.El trabajo se realizó gracias a fondos otorga-dos por la Agencia Nacional de Promoción Científica y Tecnológica de Argentina, PICT 2016-1486- Estudio de la evapotranspiración en la llanura pampeana argentina a partir de datos de satélite (EVAPAMPAS), y el Consejo Nacional de Investigaciones Científicas y Técnicas. Los autores además desean agradecer a la Comisión de Investigaciones Científicas de Buenos Aires, la Universidad Nacional del Centro de la provincia de Buenos Aires, a la Oficina de Riesgo Agropecuario de Argentina, y al Atmospheric Science Data Center de la NASA Langley Research Center por proveer los datos CERES. Además, se agradece a los revisores anónimos que contribuyeron para mejorar el documento.Carmona, F.; Holzman, M.; Rivas, R.; Degano, M.; Kruse, E.; Bayala, M. (2018). Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES. Revista de Teledetección. (51):87-98. https://doi.org/10.4995/raet.2018.9259SWORD879851Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37, 1237-1247. https://doi.org/10.1002/joc.5079Allen R.G., Tasumi M., Trezza R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - model. J. Irrig. Drain. Eng. ASCE, 133, 380-394. https://doi. org/10.1061/(ASCE)0733-9437(2007)133:4(380)Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration. (F.W. Resources, Ed.), Irrigation and Drainage. Fao. Retrieved from http://www.kimberly.uidaho.edu/water/fao56/ fao56.pdfAnderson M.C., Norman J.M., Diak G.R., Kustas W.P., Mecikalski J.R. 1997. A twosource time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens Environ, 60, 195-216. https://doi.org/10.1016/S0034-4257(96)00215-5ASCE - EWRI. 2005. The ASCE standardized reference evapotranspiration equation. ASCE-EWRI Standardization of Reference Evapotranspiration Task Comm. Report, January, 2005. http:// www.kimberly.uidaho.edu/water/asceewri/ ascestzdetmain2005.pdf.Bastiaanssen W.G.M., Menenti M., Feddes R.A., Holtslag A.A.M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol, 212-213, 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4Carmona, F., Rivas, R., Ocampo, D., Schirmbeck, J., Holzman, M. 2011. Sensores para la medición y validación de variables hidrológicas a escalas local y regional a partir del balance de energía. Aqua-LAC, Revista del programa hidrológico internacional para América Latina y el Caribe, 3, 26-36.Carmona, F., Rivas, R., Caselles, V. 2013. Estimate of the alpha parameter in an oat crop under rain-fed conditions. Hydrological Processes, 27(19), 2834- 2839. https://doi.org/10.1002/hyp.9415Carmona, F., Rivas, R., Kruse, E. 2017. Estimating daily net radiation in the FAO Penman-Monteith method. Theoretical and Applied Climatology, 129(1-2), 89- 95. https://doi.org/10.1007/s00704-016-1761-6Carmona, F., Orte, P.F., Rivas, R., Wolfram, E., Kruse, E. 2017. Development and Analysis of a New Solar Radiation Atlas for Argentina from Ground-Based Measurements and CERES_SYN1deg data. Egyptian Journal of Remote Sensing and Space Science. (In press). https://doi.org/10.1016/j.ejrs.2017.11.003Degano, M.F. 2017. Evaluación del producto de evapotranspiración global MOD16 con medidas in situ en la región de la Pampa Húmeda, Argentina. Tesis de Maestría. Repositorio DigitalCIC. Facultad de Física, Universidad de Valencia. Disponible en https://digital.cic.gba.gob.ar/ handle/11746/7085Degano F., Rivas R., Sánchez Tomás J.M., Carmona F., Niclós R. 2018. Assessment of the Potential Evapotranspiration MODIS Product Using Ground Measurements in the Pampas. Proceedings of the 2018 IEEE ARGENCON conference.Fisher J.B., Tu K.P., Baldocchi D.D. 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUX- NET sites. Remote Sens. Environ., 112, 901-919. https://doi.org/10.1016/j.rse.2007.06.025Hashimoto, H., Dungan, J.L., White, M.A., Yang, F., Michaelis, A.R., Running, S.W., Nemani, R.R. 2008. Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data. Remote Sensing of Environment, 112(1), 142-155. https://doi.org/10.1016/j.rse.2007.04.016Jensen, M., Burman, R., Allen, R. 1990. Evapotranspiration and irrigation water requirements. Am Soc Civ Eng (ASCE) Manual 70, 332.Jiang L., Islam S. 2001. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour. Res., 37, 329-340. https://doi.org/10.1029/2000WR900255Jiang, B., Liang, S., Ma, H., Zhang, X., Xiao, Z., Zhao, X., Jia, K., Yao, Y., Jia, A. 2016. GLASS daytime allwave net radiation product: Algorithm development and preliminary validation. Remote Sensing, 8(3), 222. https://doi.org/10.3390/rs8030222Kitoh, A., Kusunoki, S., Nakaegawa, T. 2011. Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). Journal of Geophysical Research Atmospheres, 116(6), 1-21. https://doi.org/10.1029/2010JD014920Long D., Longuevergne L., Scanlon B.R. 2014. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res., 50, 1131-1151. https://doi.org/10.1002/2013WR014581Martínez, G., Gutiérrez, M.A., Messineo, P.G., Kaufmann, C.A., Rafuse, D.J. 2016. Subsistence strategies in Argentina during the late Pleistocene and early Holocene. Quaternary Science Reviews, 144, 51-65. https://doi.org/10.1016/j.quascirev.2016.05.014Miralles D.G., Holmes T.R.H., De Jeu R.A.M., Gash J.H., Meesters A.G.C.A., Dolman A.J. 2011. Global land-surface evaporation estimated from satellitebased observations. Hydrol. Earth Syst Sci., 15, 453-469. https://doi.org/10.5194/hess-15-453-2011Mu Q., Heinsch F.A., Zhao M., Running S.W. 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote. Sens. Environ., 111, 519-536. https://doi.org/10.1016/j.rse.2007.04.015Mu Q.Z., Zhao M.S., Running S.W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ, 115, 1781-1800. https://doi.org/10.1016/j.rse.2011.02.019Nishida K., Nemani R.R., Glassy JM, Running S.W. 2003. Development of an evapotranspiration index from aqua/MODIS for monitoring surface moisture status. IEEE Trans Geosci. Remote Sens., 41, 493- 501. https://doi.org/10.1109/TGRS.2003.811744Ocampo, D., Rivas, R. 2013. Estimación de la radiación neta diaria a partir de Modelos de Regresión Lineal Múltiple. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 19(2), 263-271. https://doi.org/10.5154/r.rchscfa.2012.04.031Penman, H.L. 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193(1032), 120-145. https://doi.org/10.1098/rspa.1948.0037Pereyra, F. 2003. Ecorregiones de la Argentina. SEGEMAR. ISSN 0328-2325.Priestley, C.H.B., Taylor, R.J. 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81-92. https://doi.org/10.1175/1520- 0493(1972)100%3C0081:OTAOSH%3E2.3.CO;2Rivas, R.E., Carmona, F. 2013. Evapotranspiration in the Pampean Region using field measurements and satellite data. Physics and Chemistry of the Earth, Parts A/B/C, 55-57, 27-34. https://doi.org/10.1016/j.pce.2010.12.002Rivas, R., Caselles, V. 2004. A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sensing of Environment, 93, 68-76. https://doi.org/10.1016/j.rse.2004.06.021Sánchez, J.M., Scavone, G., Caselles, V., Valor, E., Copertino, V.A., Telesca, V. 2008. Monitoring daily evapotranspiration at a regional scale from LandsatTM and ETM+ data: Application to the Basilicata region. Journal of Hydrology, 351(1-2), 58-70. https://doi.org/10.1016/j.jhydrol.2007.11.041Scian, B., Labraga, J.C., Reimers, W., Frumento, O. 2006. Characteristics of large-scale atmospheric circulation related to extreme monthly rainfall anomalies in the Pampa region, Argentina, under non-ENSO conditions. Theoretical and Applied Climatology, 85(1-2), 89-106. https://doi.org/10.1007/s00704-005-0182-8Smith, G.L., Priestley, K.J., Loeb, N.G., Wielicki, B.A., Charlock, T.P., Minnis, P., Doelling, D.R., Rutan, D.A. 2011. Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future. Advances in Space Research, 48(2), 254-263. https://doi.org/10.1016/j.asr.2011.03.009Soegaard, H., Boegh, E. 1995. Estimation of evapotranspiration from a millet crop in the Sahel combining sap flow, leaf area index and eddy correlation technique. Journal of Hydrology, 166(3-4), 265-282. https://doi.org/10.1016/0022-1694(94)05094-ETang Q.H., Peterson S., Cuenca R.H., Hagimoto Y., Lettenmaier D.P. 2009. Satellite-based nearreal-time estimation of irrigated crop water consumption. J. Geophys. Res. Atmos., 114, D05114. https://doi.org/10.1029/2008JD010854Wan Z., Zhang K., Xue X.W., Hong Z., Hong Y., Gourley J.J. 2015. Water balance based actual evapotranspi- ration reconstruction from ground and satellite obser- vations over the Conterminous United States. Water Resour. Res., 51, 6485-6499. https://doi.org/10.1002/2015WR017311Wang K.C., Wang P., Li Z.Q., Cribb M., Sparrow M. 2007. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J. Geophys. Res. Atmos., 112, D15107. https://doi.org/10.1029/2006JD008351Zeng Z.Z., Piao S.L., Lin X., Yin G.D., Peng S.S., Ciais P., Myneni R.B. 2012. Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models. Environ. Res. Lett., 7, 014026, https://doi.org/10.1088/1748-9326/7/1/014026.Zhang K., Kimball J.S., Mu Q., Jones L.A., Goetz S.J., Running S.W. 2009. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol., 379, 92-110. https://doi.org/10.1016/j.jhydrol.2009.09.047Zhang, K., Kimball, J.S., Running, S.W. 2016. A review of remote sensing based actual evapotranspiration estimation. WIREs Water, 3, 834-853. https://doi.org/10.1002/wat2.116

    Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green's function formalism

    Get PDF
    This article reviews the application of the non-equilibrium Green's function formalism to the simulation of novel photovoltaic devices utilizing quantum confinement effects in low dimensional absorber structures. It covers well-known aspects of the fundamental NEGF theory for a system of interacting electrons, photons and phonons with relevance for the simulation of optoelectronic devices and introduces at the same time new approaches to the theoretical description of the elementary processes of photovoltaic device operation, such as photogeneration via coherent excitonic absorption, phonon-mediated indirect optical transitions or non-radiative recombination via defect states. While the description of the theoretical framework is kept as general as possible, two specific prototypical quantum photovoltaic devices, a single quantum well photodiode and a silicon-oxide based superlattice absorber, are used to illustrated the kind of unique insight that numerical simulations based on the theory are able to provide.Comment: 20 pages, 10 figures; invited review pape

    Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World.

    Get PDF
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites
    corecore