202 research outputs found
Interference Effects Due to Projectile Target Nucleus Scattering in Single Ionization of H₂ by 75-keV Proton Impact
Doubly differential cross sections (DDCSs) for single ionization of molecular hydrogen by 75-keV proton impact have been measured and calculated as a function of the projectile scattering angle and energy loss. Interference structures are observed in the scattering angular dependence of the DDCSs, which disappear, however, at electron speeds near the projectile speed. The comparison to our calculations shows that the projectile-target nucleus interaction plays a central role. Furthermore, our data suggest that for a given scattering angle, ionization favors well-defined molecular orientations
Interference Effects Due to Projectile Target Nucleus Scattering in Single Ionization of H₂ by 75-keV Proton Impact
Doubly differential cross sections (DDCSs) for single ionization of molecular hydrogen by 75-keV proton impact have been measured and calculated as a function of the projectile scattering angle and energy loss. Interference structures are observed in the scattering angular dependence of the DDCSs, which disappear, however, at electron speeds near the projectile speed. The comparison to our calculations shows that the projectile-target nucleus interaction plays a central role. Furthermore, our data suggest that for a given scattering angle, ionization favors well-defined molecular orientations
Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum
DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.Fil: Veluchamy, Alaguraj. Institut de Biologie de l'École Normale Supérieure; FranciaFil: Lin, Xin. Institut de Biologie de l'École Normale Supérieure; Francia. Xiamen University; ChinaFil: Maumus, Florian.Fil: Rivarola, Maximo Lisandro.Fil: Bhavsar, Jaysheel.Fil: Creasy, Todd.Fil: O'Brien, Kimberly.Fil: Sengamalay, Naomi A..Fil: Tallon, Luke J..Fil: Smith, Andrew D..Fil: Rayko, Edda.Fil: Ahmed, Ikhlak.Fil: Crom, Stéphane Le.Fil: Farrant, Gregory K..Fil: Sgro, Jean-Yves.Fil: Olson, Sue A..Fil: Bondurant, Sandra Splinter.Fil: Allen, Andrew.Fil: Rabinowicz, Pablo D..Fil: Sussman, Michael R..Fil: Bowler, Chris.Fil: Tirichine, Leïla
Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring
Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring
Stochastic particle packing with specified granulometry and porosity
This work presents a technique for particle size generation and placement in
arbitrary closed domains. Its main application is the simulation of granular
media described by disks. Particle size generation is based on the statistical
analysis of granulometric curves which are used as empirical cumulative
distribution functions to sample from mixtures of uniform distributions. The
desired porosity is attained by selecting a certain number of particles, and
their placement is performed by a stochastic point process. We present an
application analyzing different types of sand and clay, where we model the
grain size with the gamma, lognormal, Weibull and hyperbolic distributions. The
parameters from the resulting best fit are used to generate samples from the
theoretical distribution, which are used for filling a finite-size area with
non-overlapping disks deployed by a Simple Sequential Inhibition stochastic
point process. Such filled areas are relevant as plausible inputs for assessing
Discrete Element Method and similar techniques
Maternal serum steroid levels are unrelated to fetal sex: a study in twin pregnancies
Increased prenatal exposure to testosterone (T) in females of an opposite-sex (OS) twin pair may have an effect on the development of sex-typical cognitive and behavioral patterns. The prenatal exposure to T due to hormone transfer in OS twin females may occur in two ways, one directly via the feto–fetal transfer route within the uterus, the other indirectly through maternal–fetal transfer and based in the maternal–fetal compartment. Although some studies in singletons indeed found that women pregnant with a male fetus have higher T levels during gestation than women pregnant with a female fetus, many other studies could not find any relation between the sex of the fetus and maternal serum steroid levels. Therefore at present it is unclear whether a pregnant woman bearing a male has higher levels of T than a woman bearing a female. Up to this point, no-one has investigated this issue in twin pregnancies. We examined the relationship between maternal serum steroid levels and sex of fetus in 17 female–female, 9 male–male and 29 OS twin pregnancies. No differences were observed between the maternal serum steroid levels of women expecting single-sex and mixed-sex offspring. It is concluded that the source of prenatal T exposure in females probably comes from the fetal unit, which is the direct route of fetal hormone transfer
A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus
The present study was designed to compare the responses in freshwater fish Oreochromis niloticus exposed to a synthetic pyrethroid, cypermethrin (CYP); an essential metal, copper (Cu); and a nonessential metal, lead (Pb). Fish were exposed to 0.05 μg/l CYP, 0.05 mg/l Cu, and 0.05 mg/l Pb for 4 and 21 days, and the alterations in serum enzyme activities, metabolite, and ion levels were determined. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities increased in response to CYP, Cu, and Pb exposures at both exposure periods. While elevations in alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities and in cholesterol level were observed in pesticide-exposed fish at 4 and 21 days, they increased in Cu- and Pb-exposed fish at 21 days. Although metal-exposed fish showed increases in cortisol and glucose levels at 4 days followed by a return to control levels at the end of the exposure period, their levels elevated in pesticide-exposed fish at both exposure periods. Total protein levels decreased in Pb- and pesticide-exposed fish at 21 days. Na+ and Cl− levels decreased in pesticide-exposed fish at both exposure periods and in Cu- and Pb-exposed fish at 21 days. The exposures of pesticide and metals caused an elevation in K+ level at the end of the exposure period. The present study showed that observed alterations in all serum biochemical parameters of fish-treated pesticide were higher than those in fish exposed to metals
- …