19 research outputs found

    Breeding systems of floral colour forms in the Drosera cistiflora species complex

    Get PDF
    The study was supported by the National Research Foundation of South Africa (Grant 46372 to SDJ).Variation in plant breeding systems has implications for pollinator‐mediated selection on floral traits and the ecology of populations. Here we evaluate pollinator contribution to seed production, self‐compatibility and pollen limitation in different floral colour forms of Drosera cistiflora sensu lato (Droseraceae). These insectivorous perennial plants are endemic to fynbos and renosterveld vegetation in the Cape Floristic Region of South Africa, and the species complex includes five floral colour forms (pink, purple, red, white and yellow), some of which are known to be pollinated by beetles. Controlled hand‐pollination experiments were conducted in 15 populations of D. cistiflora s.l. (two to four populations per floral colour form) to test whether the colour forms vary in their degree of self‐compatibility and their ability to produce seeds through autonomous self‐fertilization. Yellow‐flowered forms were highly self‐incompatible, while other floral colour forms exhibited partial self‐compatibility. Seed set resulting from autonomous selfing was very low, and pollinator dependence indices were high in all populations. Since hand cross‐pollination resulted in greater seed set than open pollination in 13 of the 15 populations, we inferred that seed production is generally pollen‐limited.Drosera cistiflora s.l. typically exhibits high levels of pollinator dependence and pollen limitation. This is unusual among Drosera species worldwide and suggests that pollinators are likely to mediate strong selection on attractive traits such as floral colour and size in D. cistiflora s.l. These results also suggest that the floral colour forms of D. cistiflora s.l. which are rare and threatened are likely to be vulnerable to local extinction if mutualisms were to collapse indefinitely.PostprintPeer reviewe

    Phylogeny and Biogeography of the Carnivorous Plant Family Sarraceniaceae

    Get PDF
    The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44–53 million years ago (Mya) (highest posterior density [HPD] estimate = 47 Mya). By 25–44 (HPD = 35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14–32 (HPD = 23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2–7, HPD = 4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene glaciation, <3 Mya. Overall, these results suggest climatic change at different temporal and spatial scales in part shaped the distribution and diversity of this carnivorous plant clade

    DROSERACEAE

    No full text
    DROSERA ERICGREENII. A NEW SPECIES FROM THE FYNBOS OF SOUTH AFRIC

    miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia

    No full text
    MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles by targeting mRNAs for cleavage or translational repression. miRNAs act in diverse biological processes including development, cell growth, apoptosis, and hematopoiesis, suggesting their association with cancer. We determined the miRNA expression profile of chronic and acute lymphocytic leukemias (CLL and ALL) using the TaqManÂŽ MicroRNA Assays Human Panel (Applied Biosystems). Pooled leukemia samples were compared to pooled CD19+ samples from healthy individuals (calibrator) by the 2-DDCt method. Total RNA input was normalized based on the Ct values obtained for hsa-miR-30b. The five most highly expressed miRNAs were miR-128b, miR-204, miR-218, miR-331, and miR-181b-1 in ALL, and miR-331, miR-29a, miR-195, miR-34a, and miR-29c in CLL. To our knowledge, this is the first report associating miR-128b, miR-204 and miR-331 to hematological malignancies. The miR-17-92 cluster was also found to be up-regulated in ALL, as previously reported for some types of lymphomas. The differences observed in gene expression levels were validated for miR-331 and miR-128b in ALL and CD19+ samples. These miRNAs were up-regulated in ALL, in agreement with our initial results. A brief target analysis was performed for miR-331. One of its putative targets, SOCS1, promotes STAT activation, which is a known mediator of cell proliferation and survival, suggesting the possibility of an association between miR-331 and these processes. This initial screening provided information on miRNA differentially expressed in normal and malignant B-cells that could suggest the potential roles of these miRNAs in hematopoiesis and leukemogenesis

    miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia.

    No full text
    Abstract MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles by targeting mRNAs for cleavage or translational repression. miRNAs act in diverse biological processes including development, cell growth, apoptosis, and hematopoiesis, suggesting their association with cancer. We determined the miRNA expression profile of chronic and acute lymphocytic leukemias (CLL and ALL) using the TaqMan ® MicroRNA Assays Human Panel (Applied Biosystems). Pooled leukemia samples were compared to pooled CD19 + samples from healthy individuals (calibrator) by the 2 -∆∆Ct method. Total RNA input was normalized based on the Ct values obtained for hsa-miR-30b. The five most highly expressed miRNAs were miR-128b, miR-204, miR-218, miR-331, and miR181b-1 in ALL, and miR-331, miR-29a, miR-195, miR-34a, and miR29c in CLL. To our knowledge, this is the first report associating miR128b, miR-204 and miR-331 to hematological malignancies. The miR-17-92 cluster was also found to be up-regulated in ALL, as previously reported for some types of lymphomas. The differences observed in gene expression levels were validated for miR-331 and miR-128b in ALL and CD19 + samples. These miRNAs were upregulated in ALL, in agreement with our initial results. A brief target analysis was performed for miR-331. One of its putative targets, SOCS1, promotes STAT activation, which is a known mediator of cell proliferation and survival, suggesting the possibility of an association between miR-331 and these processes. This initial screening provided information on miRNA differentially expressed in normal and malignant B-cells that could suggest the potential roles of these miRNAs in hematopoiesis and leukemogenesis

    Novas ocorrĂŞncias de angiospermas para o estado de Roraima, Brasil

    No full text
    Knowledge of the flora of the Brazilian Amazon is very incomplete and many areas are still botanically unexplored. This work reports new records of angiosperms to Roraima from two conservation units in the southwest of the state, the Serra da Mocidade National Park and NiquiĂĄ Ecological Station. New records for four genera and 23 species belonging to 15 angiosperm families were found. Leguminosae had the highest number of new records, with five species. The results brought an increase of 0.75% to the angiosperm flora in Roraima, highlighting the need to expand the collection effort throughout the state
    corecore