5,253 research outputs found

    Investigation of topographical stability of the concave and convex Self-Organizing Map variant

    Get PDF
    We investigate, by a systematic numerical study, the parameter dependence of the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf concave and convex learning with respect to different input distributions, input and output dimensions

    Orbit spaces of free involutions on the product of two projective spaces

    Full text link
    Let XX be a finitistic space having the mod 2 cohomology algebra of the product of two projective spaces. We study free involutions on XX and determine the possible mod 2 cohomology algebra of orbit space of any free involution, using the Leray spectral sequence associated to the Borel fibration XXZ2BZ2X \hookrightarrow X_{\mathbb{Z}_2} \longrightarrow B_{\mathbb{Z}_2}. We also give an application of our result to show that if XX has the mod 2 cohomology algebra of the product of two real projective spaces (respectively complex projective spaces), then there does not exist any Z2\mathbb{Z}_2-equivariant map from SkX\mathbb{S}^k \to X for k2k \geq 2 (respectively k3k \geq 3), where Sk\mathbb{S}^k is equipped with the antipodal involution.Comment: 14 pages, to appear in Results in Mathematic

    Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    Full text link
    The formation of nano-hillocks on CaF2 crystal surfaces by individual ion impact has been studied using medium energy (3 and 5 MeV) highly charged ions (Xe19+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy while for swift heavy ions a minimum electronic energy loss is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via electronic energy loss the potential energy threshold for hillock production can be substantially lowered. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, as demonstrated when plotting the results in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to case where kinetic and potential energies are deposited into the surface.Comment: 12 pages, 4 figure

    Distinct magnetic ground states of R2R_2ZnIrO6_6 (RR = La and Nd) determined by neutron powder diffraction

    Full text link
    Double perovskite iridates A2A_2ZnIrO6_6 (AA = alkaline or lanthanide) show complex magnetic behaviors ranging from weak ferromagnetism to successive antiferromagnetic transitions. Here we report the static (dcdc) and dynamic (acac) magnetic susceptibility, and neutron powder diffraction measurements for AA = La and Nd compounds to elucidate the magnetic ground state. Below 10~K, the AA = La compound is best described as canted iridium moments in an antiferromagnet arrangement with a propagation vector \textbf{k} = 0 and a net ferromagnetic component along the cc-axis. On the other hand, Nd2_2ZnIrO6_6 is described well as an antiferromagnet with a propagation vector \textbf{k} = (1/2~1/2~0) below TNT_\mathrm{N} \sim 17 K. Scattering from both the Nd and Ir magnetic sublattices were required to describe the data and both were found to lie almost completely within the abab-plane. DcDc susceptibility revealed a bifurcation between the zero-field-cooled and field-cooled curves below \sim13 K in Nd2_2ZnIrO6_6. A glassy state was ruled out by acac susceptibility but detailed magnetic isotherms revealed the opening of the loop below 13~K. These results suggest a delicate balance exists between the Dzyaloshinskii-Moriya, crystal field schemes, and dd-ff interaction in this series of compounds.Comment: 6 pages, 5 figures. To be published in PR

    Magneto-structural properties of the layered quasi-2D triangular-lattice antiferromagnets Cs2_2CuCl4x_{4-x}Brx_x for x{x} = 0,1,2 and 4

    Full text link
    We present a study of the magnetic susceptibility χmol\chi_{mol} under variable hydrostatic pressure on single crystals of Cs2_2CuCl4x_{4-x}Brx_x. This includes the border compounds \textit{x} = 0 and 4, known as good realizations of the distorted triangular-lattice spin-1/2 Heisenberg antiferromagnet, as well as the isostructural stoichiometric systems Cs2_2CuCl3_{3}Br1_1 and Cs2_2CuCl2_{2}Br2_2. For the determination of the exchange coupling constants JJ and JJ^{\prime}, χmol\chi_{mol} data were fitted by a JJJ-J^{\prime} model \cite{Schmidt2015}. Its application, validated for the border compounds, yields a degree of frustration JJ^{\prime}/JJ = 0.47 for Cs2_2CuCl3_3Br1_1 and JJ^{\prime}/JJ \simeq 0.63 - 0.78 for Cs2_2CuCl2_2Br2_2, making these systems particular interesting representatives of this family. From the evolution of the magnetic susceptibility under pressure up to about 0.4\,GPa, the maximum pressure applied, two observations were made for all the compounds investigated here. First, we find that the overall energy scale, given by Jc=(J2J_c = (J^2 + J2J^{\prime 2})1/2^{1/2}, increases under pressure, whereas the ratio JJ^{\prime}/JJ remains unchanged in this pressure range. These experimental observations are in accordance with the results of DFT calculations performed for these materials. Secondly, for the magnetoelastic coupling constants, extraordinarily small values are obtained. We assign these observations to a structural peculiarity of this class of materials

    Graphene field-effect-transistors with high on/off current ratio and large transport band gap at room temperature

    Full text link
    Graphene is considered to be a promising candidate for future nano-electronics due to its exceptional electronic properties. Unfortunately, the graphene field-effect-transistors (FETs) cannot be turned off effectively due to the absence of a bandgap, leading to an on/off current ratio typically around 5 in top-gated graphene FETs. On the other hand, theoretical investigations and optical measurements suggest that a bandgap up to a few hundred meV can be created by the perpendicular E-field in bi-layer graphenes. Although previous carrier transport measurements in bi-layer graphene transistors did indicate a gate-induced insulating state at temperature below 1 Kelvin, the electrical (or transport) bandgap was estimated to be a few meV, and the room temperature on/off current ratio in bi-layer graphene FETs remains similar to those in single-layer graphene FETs. Here, for the first time, we report an on/off current ratio of around 100 and 2000 at room temperature and 20 K, respectively in our dual-gate bi-layer graphene FETs. We also measured an electrical bandgap of >130 and 80 meV at average electric displacements of 2.2 and 1.3 V/nm, respectively. This demonstration reveals the great potential of bi-layer graphene in applications such as digital electronics, pseudospintronics, terahertz technology, and infrared nanophotonics.Comment: 3 Figure

    Search for the QCD Critical Point: Higher Moments of Net-proton Multiplicity Distributions

    Full text link
    Higher moments of event-by-event net-proton multiplicity distributions have been applied to search for the QCD critical point. Model results are used to provide a baseline for this search. The measured moment products, κσ2\kappa\sigma^2 and SσS\sigma of net-proton distributions, which are directly connected to the thermodynamical baryon number susceptibility ratio in Lattice QCD and Hadron Resonance Gas (HRG) model, are compared to the transport and thermal model results. We argue that a non-monotonic dependence of κσ2\kappa \sigma^2 and SσS \sigma as a function of beam energy can be used to search for the QCD critical point.Comment: 7 pages, 3 figures. CPOD 2010 Proceeding

    Bulk-sensitive photoemission spectroscopy of A_2FeMoO_6 double perovskites (A=Sr, Ba)

    Full text link
    Electronic structures of Sr_2FeMoO_6 (SFMO) and Ba_2FeMoO_6 (BFMO) double perovskites have been investigated using the Fe 2p->3d resonant photoemission spectroscopy (PES) and the Cooper minimum in the Mo 4d photoionization cross section. The states close to the Fermi level are found to have strongly mixed Mo-Fe t_{2g} character, suggesting that the Fe valence is far from pure 3+. The Fe 2p_{3/2} XAS spectra indicate the mixed-valent Fe^{3+}-Fe^{2+} configurations, and the larger Fe^{2+} component for BFMO than for SFMO, suggesting a kind of double exchange interaction. The valence-band PES spectra reveal good agreement with the LSDA+U calculation.Comment: 4 pages, 3 figure

    Direct Imaging of Graphene Edges: Atomic Structure and Electronic Scattering

    Get PDF
    We report an atomically-resolved scanning tunneling microscopy (STM) investigation of the edges of graphene grains synthesized on Cu foils by chemical vapor deposition (CVD). Most of the edges are macroscopically parallel to the zigzag directions of graphene lattice. These edges have microscopic roughness that is found to also follow zigzag directions at atomic scale, displaying many ~120 degree turns. A prominent standing wave pattern with periodicity ~3a/4 (a being the graphene lattice constant) is observed near a rare-occurring armchair-oriented edge. Observed features of this wave pattern are consistent with the electronic intervalley backscattering predicted to occur at armchair edges but not at zigzag edges

    Transport and structural study of pressure-induced magnetic states in Nd0.55Sr0.45MnO3 and Nd0.5Sr0.5MnO3

    Full text link
    Pressure effects on the electron transport and structure of Nd1-xSrxMnO3 (x = 0.45, 0.5) were investigated in the range from ambient to ~6 GPa. In Nd0.55Sr0.45MnO3, the low-temperature ferromagnetic metallic state is suppressed and a low temperature insulating state is induced by pressure. In Nd0.5Sr0.5MnO3, the CE-type antiferromagnetic charge-ordering state is suppressed by pressure. Under pressure, both samples have a similar electron transport behavior although their ambient ground states are much different. It is surmised that pressure induces an A-type antiferromagnetic state at low temperature in both compounds
    corecore