600 research outputs found

    An Exact Conformal Symmetry Ansatz on Kaluza-Klein Reduced TMG

    Full text link
    Using a Kaluza-Klein dimensional reduction, and further imposing a conformal Killing symmetry on the reduced metric generated by the dilaton, we show an Ansatz that yields many of the known stationary axisymmetric solutions to TMG.Comment: 20 pages, 1 figure, v3: postprint, added one re

    Theoretical search for Chevrel phase based thermoelectric materials

    Full text link
    We investigate the thermoelectric properties of some semiconducting Chevrel phases. Band structure calculations are used to compute thermopowers and to estimate of the effects of alloying and disorder on carrier mobility. Alloying on the Mo site with transition metals like Re, Ru or Tc to reach a semiconducting composition causes large changes in the electronic structure at the Fermi level. Such alloys are expected to have low carrier mobilities. Filling with transition metals was also found to be incompatible with high thermoelectric performance based on the calculated electronic structures. Filling with Zn, Cu, and especially with Li was found to be favorable. The calculated electronic structures of these filled Chevrel phases are consistent with low scattering of carriers by defects associated with the filling. We expect good mobility and high thermopower in materials with the composition close to (Li,Cu)4_4Mo6_6Se8_8, particularly when Li-rich, and recommend this system for experimental investigation.Comment: 4 two-column pages, 4 embedded ps figure

    Phase diagram and influence of defects in the double perovskites

    Get PDF
    The phase diagram of the double perovskites of the type Sr_{2-x} La_x Fe Mo O_6 is analyzed, with and without disorder due to antisites. In addition to an homogeneous half metallic ferrimagnetic phase in the absence of doping and disorder, we find antiferromagnetic phases at large dopings, and other ferrimagnetic phases with lower saturation magnetization, in the presence of disorder.Comment: 4 pages, 3 postscript figures, some errata correcte

    Far-from-equilibrium quantum many-body dynamics

    Full text link
    The theory of real-time quantum many-body dynamics as put forward in Ref. [arXiv:0710.4627] is evaluated in detail. The formulation is based on a generating functional of correlation functions where the Keldysh contour is closed at a given time. Extending the Keldysh contour from this time to a later time leads to a dynamic flow of the generating functional. This flow describes the dynamics of the system and has an explicit causal structure. In the present work it is evaluated within a vertex expansion of the effective action leading to time evolution equations for Green functions. These equations are applicable for strongly interacting systems as well as for studying the late-time behaviour of nonequilibrium time evolution. For the specific case of a bosonic N-component phi^4 theory with contact interactions an s-channel truncation is identified to yield equations identical to those derived from the 2PI effective action in next-to-leading order of a 1/N expansion. The presented approach allows to directly obtain non-perturbative dynamic equations beyond the widely used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos corrected

    Dynamical Coupling between a Bose-Einstein Condensate and a Cavity Optical Lattice

    Get PDF
    A Bose-Einstein condensate is dispersively coupled to a single mode of an ultra-high finesse optical cavity. The system is governed by strong interactions between the atomic motion and the light field even at the level of single quanta. While coherently pumping the cavity mode the condensate is subject to the cavity optical lattice potential whose depth depends nonlinearly on the atomic density distribution. We observe bistability already below the single photon level and strong back-action dynamics which tunes the system periodically out of resonance.Comment: 5 pages, 4 figure

    Structural and doping effects in the half-metallic double perovskite A2A_2CrWO6_6

    Full text link
    he structural, transport, magnetic and optical properties of the double perovskite A2A_2CrWO6_6 with A=Sr, Ba, CaA=\text{Sr, Ba, Ca} have been studied. By varying the alkaline earth ion on the AA site, the influence of steric effects on the Curie temperature TCT_C and the saturation magnetization has been determined. A maximum TC=458T_C=458 K was found for Sr2_2CrWO6_6 having an almost undistorted perovskite structure with a tolerance factor f1f\simeq 1. For Ca2_2CrWO6_6 and Ba2_2CrWO6_6 structural changes result in a strong reduction of TCT_C. Our study strongly suggests that for the double perovskites in general an optimum TCT_C is achieved only for f1f \simeq 1, that is, for an undistorted perovskite structure. Electron doping in Sr2_2CrWO6_6 by a partial substitution of Sr2+^{2+} by La3+^{3+} was found to reduce both TCT_C and the saturation magnetization MsM_s. The reduction of MsM_s could be attributed both to band structure effects and the Cr/W antisites induced by doping. Band structure calculations for Sr2_2CrWO6_6 predict an energy gap in the spin-up band, but a finite density of states for the spin-down band. The predictions of the band structure calculation are consistent with our optical measurements. Our experimental results support the presence of a kinetic energy driven mechanism in A2A_2CrWO6_6, where ferromagnetism is stabilized by a hybridization of states of the nonmagnetic W-site positioned in between the high spin Cr-sites.Comment: 14 pages, 10 figure

    Metric 3-Lie algebras for unitary Bagger-Lambert theories

    Get PDF
    We prove a structure theorem for finite-dimensional indefinite-signature metric 3-Lie algebras admitting a maximally isotropic centre. This algebraic condition indicates that all the negative-norm states in the associated Bagger-Lambert theory can be consistently decoupled from the physical Hilbert space. As an immediate application of the theorem, new examples beyond index 2 are constructed. The lagrangian for the Bagger-Lambert theory based on a general physically admissible 3-Lie algebra of this kind is obtained. Following an expansion around a suitable vacuum, the precise relationship between such theories and certain more conventional maximally supersymmetric gauge theories is found. These typically involve particular combinations of N=8 super Yang-Mills and massive vector supermultiplets. A dictionary between the 3-Lie algebraic data and the physical parameters in the resulting gauge theories will thereby be provided.Comment: 38 page

    Two-proton correlations from 158 AGeV Pb+Pb central collisions

    Get PDF
    The two-proton correlation function at midrapidity from Pb+Pb central collisions at 158 AGeV has been measured by the NA49 experiment. The results are compared to model predictions from static thermal Gaussian proton source distributions and transport models RQMD and VENUS. An effective proton source size is determined by minimizing CHI-square/ndf between the correlation functions of the data and those calculated for the Gaussian sources, yielding 3.85 +-0.15(stat.) +0.60-0.25(syst.) fm. Both the RQMD and the VENUS model are consistent with the data within the error in the correlation peak region.Comment: RevTeX style, 6 pages, 4 figures, 1 table. More discussion are added about the structure on the tail of the correlation function. The systematic error is revised. To appear in Phys. Lett.
    corecore