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METRIC 3-LIE ALGEBRAS FOR UNITARY BAGGER–LAMBERT
THEORIES

PAUL DE MEDEIROS, JOSÉ FIGUEROA-O’FARRILL, ELENA MÉNDEZ-ESCOBAR AND PATRICIA
RITTER

Abstract. We prove a structure theorem for finite-dimensional indefinite-signature metric
3-Lie algebras admitting a maximally isotropic centre. This algebraic condition indicates that
all the negative-norm states in the associated Bagger–Lambert theory can be consistently de-
coupled from the physical Hilbert space. As an immediate application of the theorem, new
examples beyond index 2 are constructed. The lagrangian for the Bagger–Lambert theory
based on a general physically admissible 3-Lie algebra of this kind is obtained. Following an
expansion around a suitable vacuum, the precise relationship between such theories and certain
more conventional maximally supersymmetric gauge theories is found. These typically involve
particular combinations of N = 8 super Yang-Mills and massive vector supermultiplets. A
dictionary between the 3-Lie algebraic data and the physical parameters in the resulting gauge
theories will thereby be provided.
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1. Introduction and Summary

The fundamental ingredient in the Bagger–Lambert–Gustavsson (BLG) model [1–3], pro-
posed as the low-energy effective field theory on a stack of coincident M2-branes, is a met-
ric 3-Lie algebra V on which the matter fields take values. This means that V is a real
vector space with a symmetric inner product 〈−,−〉 and a trilinear, alternating 3-bracket
[−,−,−] : V × V × V → V obeying the fundamental identity [4]

[x, y, [z1, z2, z3]] = [[x, y, z1], z2, z3] + [z1, [x, y, z2], z3] + [z1, z2, [x, y, z3]] , (1)

and the metricity condition

〈[x, y, z1], z2〉 = −〈z1, [x, y, z2]〉 , (2)

for all x, y, zi ∈ V . We say that V is indecomposable if it is not isomorphic to an orthogonal
direct sum of nontrivial metric 3-Lie algebras. Every indecomposable metric 3-Lie algebra
gives rise to a BLG model and this motivates their classification. It is natural to attempt
this classification in increasing index — the index of an inner product being the dimension of
the maximum negative-definite subspace. In other words, index 0 inner products are positive-
definite (called euclidean here), index 1 are lorentzian, et cetera. To this date there is a
classification up to index 2, which we now review.

It was conjectured in [5] and proved in [6] (see also [7,8]) that there exists a unique nonabelian
indecomposable metric 3-Lie algebra of index 0. It is the simple 3-Lie algebra [4] S4 with
underlying vector space R4, orthonormal basis e1, e2, e3, e4, and 3-bracket

[ei, ej, ek] =

4
∑

ℓ=1

εijkℓeℓ , (3)

where ε = e1 ∧e2 ∧e3 ∧e4. Nonabelian indecomposable 3-Lie algebras of index 1 were classified
in [9] and are given either by

• the simple lorentzian 3-Lie algebra S3,1 with underlying vector space R4, orthonormal
basis e0, e1, e2, e3 with e0 timelike, and 3-bracket

[eµ, eν , eρ] =

3
∑

σ=0

εµνρσsσeσ , (4)

where s0 = −1 and si = 1 for i = 1, 2, 3; or
• W (g), with underlying vector space g ⊕ Ru ⊕ Rv, where g is a semisimple Lie algebra

with a choice of positive-definite invariant inner product, extended to W (g) by declaring
u, v ⊥ g and 〈u, u〉 = 〈v, v〉 = 0 and 〈u, v〉 = 1, and with 3-brackets

[u, x, y] = [x, y] and [x, y, z] = −〈[x, y], z〉 v , (5)

for all x, y, z ∈ g.
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The latter metric 3-Lie algebras were discovered independently in [10–12] in the context of the
BLG model. The index 2 classification is presented in [13]. There we found two classes of
solutions, termed Ia and IIIb. The former class is of the form W (g), but where g is now a
lorentzian semisimple Lie algebra, whereas the latter class will be recovered as a special case of
the results in this paper and hence will be described in more detail below.

Let us now discuss the BLG model from a 3-algebraic perspective. The V -valued matter
fields in the BLG model [1–3] comprise eight bosonic scalars X and eight fermionic Majorana
spinors Ψ in three-dimensional Minkowski space R1,2. Triality allows one to take the scalars X
and fermions Ψ to transform respectively in the vector and chiral spinor representations of the
so(8) R-symmetry. These matter fields are coupled to a nondynamical gauge field A which is
valued in Λ2V and described by a so-called twisted Chern–Simons term in the Bagger–Lambert
lagrangian [1, 3]. The inner product 〈−,−〉 on V is used to describe the kinetic terms for the
matter fields X and Ψ in the Bagger–Lambert lagrangian. Therefore if the index of V is positive
(i.e. not euclidean signature) then the associated BLG model is not unitary as a quantum field
theory, having ‘wrong’ signs for the kinetic terms for those matter fields in the negative-definite
directions on V , thus carrying negative energy.

Indeed, for the BLG model based on the index-1 3-Lie algebra W (g), one encounters just this
problem. Remarkably though, as noted in the pioneering works [10–12], here the matter field
components Xv and Ψv along precisely one of the two null directions (u, v) inW (g) never appear
in any of the interaction terms in the Bagger–Lambert lagrangian. Since the interactions are
governed only by the structure constants of the 3-Lie algebra then this property simply follows
from the absence of v on the left hand side of any of the 3-brackets in (5). Indeed the one null
direction v spans the centre of W (g) and the linear equations of motion for the matter fields
along v force the components Xu and Ψu in the other null direction u to take constant values
(preservation of maximal supersymmetry in fact requires Ψu = 0). By expanding around this
maximally supersymmetric and gauge-invariant vacuum defined by the constant expectation
value of Xu, one can obtain a unitary quantum field theory. Use of this strategy in [12] gave
the first indication that the resulting theory is nothing but N = 8 super Yang–Mills theory
on R1,2 with the euclidean semi-simple gauge algebra g. The super Yang–Mills theory gauge
coupling here being identified with the SO(8)-norm of the constant Xu. This procedure is
somewhat reminiscent of the novel Higgs mechanism introduced in [14] in the context of the
Bagger–Lambert theory based on the euclidean Lie 3-algebra S4. In that case an N = 8 super
Yang-Mills theory with su(2) gauge algebra is obtained, but with an infinite set of higher order
corrections suppressed by inverse powers of the gauge coupling. As found in [12], the crucial
difference is that there are no such corrections present in the lorentzian case.

Of course, one must be wary of naively integrating out the free matter fields Xv and Ψv in
this way since their absence in any interaction terms in the Bagger–Lambert lagrangian gives
rise to an enhanced global symmetry that is generated by shifting them by constant values. To
account for this degeneracy in the action functional, in order to correctly evaluate the partition
function, one must gauge the shift symmetry and perform a BRST quantisation of the resulting
theory. Fixing this gauged shift symmetry allows one to set Xv and Ψv equal to zero while
the equations of motion for the new gauge fields sets Xu constant and Ψu = 0. Indeed this
more rigorous treatment has been carried out in [15, 16] whereby the perturbative equivalence
between the Bagger–Lambert theory based onW (g) and maximally supersymmetric Yang–Mills
theory with euclidean gauge algebra g was established (see also [17]). Thus the introduction
of manifest unitarity in the quantum field theory has come at the expense of realising an
explicit maximal superconformal symmetry in the BLG model for W (g), i.e. scale-invariance
is broken by a nonzero vacuum expectation value for Xu. It is perhaps worth pointing out
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that the super Yang–Mills description seems to have not captured the intricate structure of a
particular ‘degenerate’ branch of the classical maximally supersymmetric moduli space in the
BLG model for W (g) found in [9]. The occurrence of this branch can be understood to arise
from a degenerate limit of the theory wherein the scale Xu = 0 and maximal superconformal
symmetry is restored. However, as found in [15, 16], the maximally superconformal unitary
theory obtained by expanding around Xu = 0 describes a rather trivial free theory for eight
scalars and fermions, whose moduli space does not describe said degenerate branch of the
original moduli space.

Consider now a general indecomposable metric 3-Lie algebra with index r of the form V =
⊕r

i=1(Rui ⊕ Rvi) ⊕W , where 〈ui, uj〉 = 0 = 〈vi, vj〉, 〈ui, vj〉 = δij and W is a euclidean vector
space. As explained in section 2.4 of [13], one can ensure that none of the null components
Xvi and Ψvi of the matter fields appear in any of the interactions in the associated Bagger–
Lambert lagrangian provided that no vi appear on the left hand side of any of the 3-brackets
on V . This guarantees one has an extra shift symmetry for each of these null components
suggesting that all the associated negative-norm states in the spectrum of this theory can be
consistently decoupled after gauging all the shift symmetries and following BRST quantisation
of the gauged theory. A more invariant way of stating the aforementioned criterion is that
V should admit a maximally isotropic centre: that is, a subspace Z ⊂ V of dimension equal
to the index of the inner product on V , on which the inner product vanishes identically and
which is central, so that [Z, V, V ] = 0 in the obvious notation. The null directions vi defined
above along which we require the extra shift symmetries are thus taken to provide a basis for
Z. In [13] we classified all indecomposable metric 3-Lie algebras of index 2 with a maximally
isotropic centre. There are nine families of such 3-Lie algebras, which were termed type IIIb
in that paper. In the present paper we will prove a structure theorem for general metric 3-Lie
algebras which admit a maximally isotropic centre, thus characterising them fully. Although
the structure theorem falls short of a classification, we will argue that it is the best possible
result for this problem. The bosonic contributions to the Bagger–Lambert lagrangians for such
3-Lie algebras will be computed but we will not perform a rigorous analysis of the physical
theory in the sense of gauging the shift symmetries and BRST quantisation. We will limit
ourselves to expanding the theory around a suitable maximally supersymmetric and gauge-
invariant vacuum defined by a constant expectation value for Xui (with Ψui = 0). This is the
obvious generalisation of the procedure used in [12] for the lorentzian theory and coincides with
that used more recently in [18] for more general 3-Lie algebras. We will comment explicitly on
how all the finite-dimensional examples considered in section 4 of [18] can be recovered from
our formalism.

As explained in sections 2.5 and 2.6 of [13], two more algebraic conditions are necessary
in order to interpret the BLG model based on a general metric 3-Lie algebra with maximally
isotropic centre as an M2-brane effective field theory. Firstly, the 3-Lie algebra should admit
a (nonisometric) conformal automorphism that can be used to absorb the formal coupling
dependence in the BLG model. In [13] we determined that precisely four of the nine IIIb families
of index 2 3-Lie algebras with maximally isotropic centre satisfy this condition. Secondly, parity
invariance of the BLG model requires the 3-Lie algebra to admit an isometric antiautomorphism.
This symmetry is expected of an M2-brane effective field theory based on the assumption that it
should arise as an IR superconformal fixed point of N = 8 super Yang–Mills theory. In [13] we
determined that each of the four IIIb families of index 2 3-Lie algebras admitting said conformal
automorphism also admitted an isometric antiautomorphism.

It is worth emphasising that the motivation for the two conditions above is distinct from that
which led us to demand a maximally isotropic centre. The first two are required only for an
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M-theoretic interpretation while the latter is a basic physical consistency condition to ensure
that the resulting quantum field theory is unitary. Moreover, even given a BLG model based on
a 3-Lie algebra satisfying all three of these conditions, it is plain to see that the procedure we
shall follow must generically break the initial conformal symmetry since it has introduced scales
into the problem corresponding to the vacuum expectation values of Xui. It is inevitable that
this breaking of scale-invariance will also be a feature resulting from a more rigorous treatment
in terms of gauging shift symmetries and BRST quantisation.

Thus we shall concentrate just on the unitarity condition and, for the purposes of this paper,
we will say that a metric 3-Lie algebra is (physically) admissible if it is indecomposable
and admits a maximally isotropic centre. The first part of the present paper will be devoted
in essence to characterising finite-dimensional admissible 3-Lie algebras. The second part will
describe the general structure of the gauge theories which result from expanding the BLG model
based on these physically admissible 3-Lie algebras around a given vacuum expectation value
for Xui. Particular attention will be paid to explaining how the 3-Lie algebraic data translates
into physical parameters of the resulting gauge theories.

This paper is organised as follows. Section 2 is concerned with the proof of Theorem 9, which
is outlined at the start of that section. The theorem may be paraphrased as stating that every
finite-dimensional admissible 3-Lie algebra of index r > 0 is constructed as follows. We start
with the following data:

• for each α = 1, . . . , N , a nonzero vector 0 6= κα ∈ Rr with components κα
i , a positive

real number λα > 0 and a compact simple Lie algebra gα;
• for each π = 1, . . . ,M , a two-dimensional euclidean vector space Eπ with a complex

structure Hπ, and two linearly independent vectors ηπ, ζπ ∈ Rr;
• a euclidean vector space E0 and K ∈ Λ3Rr ⊗E0 obeying the quadratic equations

〈Kijn, Kkℓm〉 − 〈Kijm, Knkℓ〉 + 〈Kijℓ, Kmnk〉 − 〈Kijk, Kℓmn〉 = 0,

where 〈−,−〉 is the inner product on E0;
• and L ∈ Λ4Rr.

On the vector space

V =
r

⊕

i=1

(Rui ⊕ Rvi) ⊕
N

⊕

α=1

gα ⊕
M

⊕

π=1

Eπ ⊕ E0,

we define the following inner product extending the inner product on Eπ and E0:

• 〈ui, vj〉 = δij , 〈ui, uj〉 = 0, 〈vi, vj〉 = 0 and ui, vj are orthogonal to the gα, Eπ and E0;
and

• on each gα we take −λα times the Killing form.
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This makes V above into an inner product space of index r. On V we define the following
3-brackets, with the tacit assumption that any 3-bracket not listed here is meant to vanish:

[ui, uj, uk] = Kijk +
r

∑

ℓ=1

Lijkℓvℓ

[ui, uj, x0] = −
r

∑

k=1

〈Kijk, x0〉 vk

[ui, uj, xπ] = (ηπ
i ζ

π
j − ηπ

j ζ
π
i )Hπxπ

[ui, xπ, yπ] = 〈Hπxπ, yπ〉
r

∑

j=1

(ηπ
i ζ

π
j − ηπ

j ζ
π
i )vj

[ui, xα, yα] = κα
i [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉
r

∑

i=1

κα
i vi,

(6)

for all x0 ∈ E0, xπ, yπ ∈ Eπ, and xα, yα, zα ∈ gα. The resulting metric 3-Lie algebra has a
maximally isotropic centre spanned by the vi. It is indecomposable provided that there is no
x0 ∈ E0 which is perpendicular to all the Kijk, whence in particular dimE0 ≤

(

r
3

)

. The only
non-explicit datum in the above construction are the Kijk since they are subject to certain
quadratic equations. However we will see that these equations are trivially satisfied for r < 5.
Hence the above results constitutes, in principle, a classification for indices 3 and 4, extending
the classification of index 2 in [13].

Using this structure theorem we are able to calculate the lagrangian for the BLG model asso-
ciated with a general physically admissible 3-Lie algebra. For the sake of clarity, we shall focus
on just the bosonic contributions since the resulting theories will have a canonical maximally
supersymmetric completion. Upon expanding this theory around the maximally supersymmet-
ric vacuum defined by constant expectation values Xui (with all the other fields set to zero) we
will obtain standard N = 8 supersymmetric (but nonconformal) gauge theories with moduli
parametrised by particular combinations of the data appearing in Theorem 9 and the vacuum
expectation values Xui. It will be useful to think of the vacuum expectation values Xui as
defining a linear map, also denoted Xui : Rr → R8, sending ξ 7→ Xξ :=

∑r
i=1 ξiX

ui. Indeed
it will be found that the physical gauge theory parameters are naturally expressed in terms
of components in the image of this map. That is, in general, we find that neither the data in
Theorem 9 nor the vacuum expectation values Xui on their own appear as physical parameters
which instead arise from certain projections of the components of the data in Theorem 9 onto
Xui in R8.

The resulting Bagger–Lambert lagrangian will be found to factorise into a sum of decoupled
maximally supersymmetric gauge theories on each of the euclidean components gα, Eπ and E0.
The physical content and moduli on each component can be summarised as follows:

• On each gα one has an N = 8 super Yang–Mills theory. The gauge symmetry is based on
the simple Lie algebra gα. The coupling constant is given by ‖Xκα‖, which denotes the
SO(8)-norm of the image of κα ∈ Rr under the linear map Xui. The seven scalar fields
take values in the hyperplane R7 ⊂ R8 which is orthogonal to the direction defined by
Xκα

. (If Xκα

= 0, for a given value of α, one obtains a degenerate limit corresponding
to a maximally superconformal free theory for eight scalar fields and eight fermions
valued in gα.)
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• On each plane Eπ one has a pair of identical free abelian N = 8 massive vector super-
multiplets. The bosonic fields in each such supermultiplet comprise a massive vector
and six massive scalars. The mass parameter is given by ‖Xηπ ∧ Xζπ‖, which corre-
sponds to the area of the parallelogram in R8 defined by the vectors Xηπ

and Xζπ

in
the image of the map Xui. The six scalar fields inhabit the R

6 ⊂ R
8 which is orthog-

onal to the plane spanned by Xηπ

and Xζπ

. (If ‖Xηπ ∧ Xζπ‖ = 0, for a given value
of π, one obtains a degenerate massless limit where the vector is dualised to a scalar,
again corresponding to a maximally superconformal free theory for eight scalar fields
and eight fermions valued in Eπ.) Before gauge-fixing, this theory can be understood as
an N = 8 super Yang–Mills theory with gauge symmetry based on the four-dimensional
Nappi–Witten Lie algebra d(Eπ,R). Moreover we explain how it can be obtained from a
particular truncation of an N = 8 super Yang-Mills theory with gauge symmetry based
on any euclidean semisimple Lie algebra with rank 2, which may provide a more natural
D-brane interpretation.

• On E0 one has a decoupled N = 8 supersymmetric theory involving eight free scalar
fields and an abelian Chern–Simons term. Since none of the matter fields are charged
under the gauge field in this Chern–Simons term then its overall contribution is essen-
tially trivial on R

1,2.

Note added

During the completion of this work the paper [18] appeared whose results have noticeable
overlap with those found here. In particular, they also describe the physical properties of BLG
models based on certain finite-dimensional 3-Lie algebras with index greater than 1 admitting
a maximally isotropic centre. The structure theorem we prove here for such 3-Lie algebras
allows us to extend some of their results and make general conclusions about the nature of
those unitary gauge theories which arise from BLG models based on physically admissible
3-Lie algebras. In terms of our data in Theorem 9, the explicit finite-dimensional examples
considered in section 4 of [18] all have Kijk = 0 = Lijkl with only one Jij nonzero. This is
tantamount to taking the index r = 2. The example in sections 4.1 and 4.2 of [18] has κα = 0
(i.e. no gα part) while the example in section 4.3 has κα = (1, 0)t. These are isomorphic to two
of the four physically admissible IIIb families of index 2 3-Lie algebras found in [13].

2. Towards a classification of admissible metric 3-Lie algebras

In this section we will prove a structure theorem for finite-dimensional indecomposable metric
3-Lie algebras admitting a maximally isotropic centre. We think it is of pedagogical value to
first rederive the similar structure theorem for metric Lie algebras using a method similar to
the one we will employ in the more involved case of metric 3-Lie algebras.

2.1. Metric Lie algebras with maximally isotropic centre. Recall that a Lie algebra g is
said to be metric, if it possesses an ad-invariant scalar product. It is said to be indecomposable if
it is not isomorphic to an orthogonal direct sum of metric Lie algebras (of positive dimension).
Equivalently, it is indecomposable if there are no proper ideals on which the scalar product
restricts nondegenerately. A metric Lie algebra g is said to have index r, if the ad-invariant
scalar product has index r, which is the same as saying that the maximally negative-definite
subspace of g is r-dimensional. In this section we will prove a structure theorem for finite-
dimensional indecomposable metric Lie algebras admitting a maximally isotropic centre, a
result originally due to Kath and Olbrich [19].
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2.1.1. Preliminary form of the Lie algebra. Let g be a finite-dimensional indecomposable metric
Lie algebra of index r > 0 admitting a maximally isotropic centre. Let vi, i = 1, . . . , r, denote
a basis for the centre. The inner product is such that 〈vi, vj〉 = 0. Since the inner product
on g is nondegenerate, there exist ui, i = 1, . . . , r, which obey 〈ui, vj〉 = δij . It is always
possible to choose the ui such that 〈ui, uj〉 = 0. Indeed, if the ui do not span a maximally
isotropic subspace, then redefine them by ui 7→ ui − 1

2

∑r
j=1 〈ui, uj〉 vj so that they do. The

perpendicular complement to the 2r-dimensional subspace spanned by the ui and the vj is then
positive-definite. In summary, g admits the following vector space decomposition

g =
r

⊕

i=1

(Rui ⊕ Rvi) ⊕ r, (7)

where r is the positive-definite subspace of g perpendicular to all the ui and vj .
Metricity then implies that the most general Lie brackets on g are of the form

[ui, uj] = Kij +
r

∑

k=1

Lijkvk

[ui, x] = Jix−
r

∑

j=1

〈Kij , x〉 vj

[x, y] = [x, y]r −
r

∑

i=1

〈x, Jiy〉 vi,

(8)

where Kij = −Kji ∈ r, Lijk ∈ R is totally skewsymmetric in the indices, Ji ∈ so(r) and
[−,−]r : r× r → r is bilinear and skewsymmetric. Metricity and the fact that the vi are central,
means that no ui can appear on the right-hand side of a bracket. Finally, metricity also implies
that

〈[x, y]r, z〉 = 〈x, [y, z]r〉 , (9)

for all x, y, z ∈ r.
It is not hard to demonstrate that the Jacobi identity for g is equivalent to the following

identities on [−,−]r, Ji and Kij , whereas Lijk is unconstrained:

[x, [y, z]r]r − [[x, y]r, z]r − [y, [x, z]r]r = 0 (10a)

Ji[x, y]r − [Jix, y]r − [x, Jiy]r = 0 (10b)

JiJjx− JjJix− [Kij , x]r = 0 (10c)

JiKjk + JjKki + JkKij = 0 (10d)

〈Kℓi, Kjk〉 + 〈Kℓj, Kki〉 + 〈Kℓk, Kij〉 = 0, (10e)

for all x, y, z ∈ r.

2.1.2. r is abelian. Equation (10a) says that r is a Lie algebra under [−,−]r, which because of
equation (9) is metric. Being positive-definite, it is reductive, whence an orthogonal direct sum
r = s ⊕ a, where s is semisimple and a is abelian. We will show that for an indecomposable g,
we are forced to take s = 0, by showing that g = s ⊕ s⊥ as a metric Lie algebra.

Equation (10b) says that Ji is a derivation of r, which we know to be skewsymmetric. The
Lie algebra of skewsymmetric derivations of r is given by ad s ⊕ so(a). Therefore under this
decomposition, we may write Ji = ad zi + Ja

i , for some unique zi ∈ s and Ja
i ∈ so(a).
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Decompose Kij = Ks
ij + Ka

ij, with Ks
ij ∈ s and Ka

ij ∈ a. Then equation (10c) becomes the
following two conditions

[zi, zj ]r = Ks
ij (11)

and

[Ja
i , J

a
j ] = 0. (12)

One can now check that the s-component of the Jacobi identity for g is automatically satisfied,
whereas the a-component gives rise to the two equations

Ja
i K

a
jk + Ja

jK
a
ki + Ja

kK
a
ij = 0 (13)

and
〈

Ka
ℓi, K

a
jk

〉

+
〈

Ka
ℓj, K

a
ki

〉

+
〈

Ka
ℓk, K

a
ij

〉

= 0. (14)

We will now show that g ∼= s ⊕ s⊥, which violates the indecomposability of g unless s = 0.
Consider the isometry ϕ of the vector space g defined by

ϕ(ui) = ui − zi − 1
2

r
∑

j=1

〈zi, zj〉 vj

ϕ(vi) = vi

ϕ(x) = x+

r
∑

i=1

〈zi, x〉 vi,

(15)

for all x ∈ r. Notice that if x ∈ a, then ϕ(x) = x. It is a simple calculation to see that for all
x, y ∈ s,

[ϕ(ui), ϕ(x)] = 0 and [ϕ(x), ϕ(y)] = ϕ([x, y]r). (16)

In other words, the image of s under ϕ is a Lie subalgebra of g isomorphic to s and commuting
with its perpendicular complement in g. In other words, as a metric Lie algebra g ∼= s ⊕ s⊥,
violating the decomposability of g unless s = 0.

In summary, we have proved the following

Lemma 1. Let g be a finite-dimensional indecomposable metric Lie algebra with index r > 0
and admitting a maximally isotropic centre. Then as a vector space

g =

r
⊕

i=1

(Rui ⊕ Rvi) ⊕E, (17)

where E is a euclidean space, ui, vi ⊥ E and 〈ui, vj〉 = δij, 〈ui, uj〉 = 〈vi, vj〉 = 0. Moreover the

Lie bracket is given by

[ui, uj] = Kij +
r

∑

k=1

Lijkvk

[ui, x] = Jix−
r

∑

j=1

〈Kij , x〉 vj

[x, y] = −
r

∑

i=1

〈x, Jiy〉 vi,

(18)
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where Kij = −Kji ∈ E, Lijk ∈ R is totally skewsymmetric in its indices, Ji ∈ so(E) and in

addition obey the following conditions:

JiJj − JjJi = 0 (19a)

JiKjk + JjKki + JkKij = 0 (19b)

〈Kℓi, Kjk〉 + 〈Kℓj, Kki〉 + 〈Kℓk, Kij〉 = 0. (19c)

The analysis of the above equations will take the rest of this section, until we arrive at the
desired structure theorem.

2.1.3. Solving for the Ji. Equation (19a) says that the Ji ∈ so(E) are mutually commuting,
whence they span an abelian subalgebra h ⊂ so(E). Since E is positive-definite, E decomposes
as the following orthogonal direct sum as a representation of h:

E =

s
⊕

π=1

Eπ ⊕ E0, (20)

where

E0 = {x ∈ E|Jix = 0 ∀i} (21)

and each Eπ is a two-dimensional real irreducible representation of h with certain nonzero
weight. Let (Hπ) denote the basis for h where

HπH̺ =

{

0 if π 6= ̺,

−Ππ if π = ̺,
(22)

where Ππ ∈ End(E) is the orthogonal projector onto Eπ. Relative to this basis we can then
write Ji =

∑

π J
π
i Hπ, for some real numbers Jπ

i .

2.1.4. Solving for the Kij. Since Kij ∈ E, we may decompose according to (20) as

Kij =
s

∑

π=1

Kπ
ij +K0

ij . (23)

We may identify each Eπ with a complex line where Hπ acts by multiplication by i. This turns
the complex number Kπ

ij into one component of a complex bivector Kπ ∈ Λ2
C

r. Equation
(19b) splits into one equation for each Kπ and that equation says that

Jπ
i K

π
jk + Jπ

j K
π
ki + Jπ

kK
π
ij = 0, (24)

or equivalently that Jπ ∧Kπ = 0, which has as unique solution Kπ = Jπ ∧ tπ, for some tπ ∈ Rr.
In other words,

Kπ
ij = Jπ

i t
π
j − Jπ

j t
π
i . (25)

Now consider the following vector space isometry ϕ : g → g, defined by

ϕ(ui) = ui − ti − 1
2

r
∑

j=1

〈ti, tj〉 vj

ϕ(vi) = vi

ϕ(x) = x+

r
∑

i=1

〈ti, x〉 vi,

(26)
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for all x ∈ E, where ti ∈ E and hence ti =
∑s

π=1 t
π
i + t0i . Under this isometry the form of the

Lie algebra remains invariant, but Kij changes as

Kij 7→ Kij − Jitj + Jjti (27)

and Lijk changes in a manner which need not concern us here. Therefore we see that Kπ
ij has

been put to zero via this transformation, whereas K0
ij remains unchanged. In other words, we

can assume without loss of generality that Kij ∈ E0, so that JiKkl = 0, while still being subject
to the quadratic equation (19c).

In summary, we have proved the following theorem, originally due to Kath and Olbrich [19]:

Theorem 2. Let g be a finite-dimensional indecomposable metric Lie algebra of index r > 0
admitting a maximally isotropic centre. Then as a vector space

g =
r

⊕

i=1

(Rui ⊕ Rvi) ⊕
s

⊕

π=1

Eπ ⊕E0, (28)

where all direct sums but the one between Rui and Rvi are orthogonal and the inner product is

as in Lemma 1. Let 0 6= Jπ ∈ Rr, Kij ∈ E0 and Lijk ∈ R and assume that the Kij obey the

following quadratic relation

〈Kℓi, Kjk〉 + 〈Kℓj , Kki〉 + 〈Kℓk, Kij〉 . = 0. (29)

Then the Lie bracket of g is given by

[ui, uj] = Kij +

r
∑

k=1

Lijkvk

[ui, x] = Jπ
i Hπx

[ui, z] = −
r

∑

j=1

〈Kij, z〉 vj

[x, y] = −
r

∑

i=1

〈x, Jπ
i Hπy〉 vi,

(30)

where x, y ∈ Eπ and z ∈ E0. Furthermore, indecomposability forces the Kij to span all of E0,

whence dimE0 ≤
(

r
2

)

.

It should be remarked that the Lijk are only defined up to the following transformation

Lijk 7→ Lijk + 〈Kij , tk〉 + 〈Kki, tj〉 + 〈Kjk, ti〉 , (31)

for some ti ∈ E0.
It should also be remarked that the quadratic relation (29) is automatically satisfied for index

r ≤ 3, whereas for index r ≥ 4 it defines an algebraic variety. In that sense, the classification
problem for indecomposable metric Lie algebras admitting a maximally isotropic centre is not
tame for index r > 3.

2.2. Metric 3-Lie algebras with maximally isotropic centre. After the above warm-
up exercise, we may now tackle the problem of interest, namely the classification of finite-
dimensional indecomposable metric 3-Lie algebras with maximally isotropic centre. The proof
is not dissimilar to that of Theorem 2, but somewhat more involved and requires new ideas.
Let us summarise the main steps in the proof.
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(1) In section 2.2.1 we write down the most general form of a metric 3-Lie algebra V
consistent with the existence of a maximally isotropic centre Z. As a vector space,
V = Z ⊕ Z∗ ⊕ W , where Z and Z∗ are nondegenerately paired and W is positive-
definite. Because Z is central, the 4-form F (x, y, z, w) := 〈[x, y, z], w〉 on V defines an
element in Λ4(W ⊕ Z). The decomposition

Λ4(W ⊕ Z) = Λ4W ⊕
(

Λ3W ⊗ Z
)

⊕
(

Λ2W ⊗ Λ2Z
)

⊕
(

W ⊗ Λ3Z
)

⊕ Λ4Z (32)

induces a decomposition of F =
∑4

a=0 Fa, where Fa ∈ Λ4−aW ⊗ ΛaZ, where the com-
ponent F4 is unconstrained.

(2) The component F0 defines the structure of a metric 3-Lie algebra on W which, if V is
indecomposable, must be abelian, as shown in section 2.2.2.

(3) The component F1 defines a compatible family [−,−]i of reductive Lie algebras onW . In
section 2.2.3 we show that they all are proportional to a reductive Lie algebra structure
g ⊕ z on W , where g is semisimple and z is abelian.

(4) In section 2.2.4 we show that the component F2 defines a family Jij of commuting
endomorphisms spanning an abelian Lie subalgebra a < so(z). Under the action of a, z

breaks up into a direct sum of irreducible 2-planes Eπ and a euclidean vector space E0

on which the Jij act trivially.
(5) In section 2.2.5 we show that the component F3 defines elements Kijk ∈ E0 which are

subject to a quadratic equation.

2.2.1. Preliminary form of the 3-algebra. Let V be a finite-dimensional metric 3-Lie algebra
with index r > 0 and admitting a maximally isotropic centre. Let vi, i = 1, . . . , r, denote a basis
for the centre. Since the centre is (maximally) isotropic, 〈vi, vj〉 = 0, and since the inner product
on V is nondegenerate, there exists ui, i = 1, . . . , r satisfying 〈ui, vj〉 = δij . Furthermore, it
is possible to choose the ui such that 〈ui, uj〉 = 0. The perpendicular complement W of the
2r-dimensional subspace spanned by the ui and vi is therefore positive definite. In other words,
V admits a vector space decomposition

V =

r
⊕

i=1

(Rui ⊕ Rvi) ⊕W. (33)

Since the vi are central, metricity of V implies that the ui cannot appear in the right-hand
side of any 3-bracket. The most general form for the 3-bracket for V consistent with V being
a metric 3-Lie algebra is given for all x, y, z ∈W by

[ui, uj, uk] = Kijk +

r
∑

ℓ=1

Lijkℓvℓ

[ui, uj, x] = Jijx−
r

∑

k=1

〈Kijk, x〉 vk

[ui, x, y] = [x, y]i −
r

∑

j=1

〈x, Jijy〉 vj

[x, y, z] = [x, y, z]W −
r

∑

i=1

〈[x, y]i, z〉 vi,

(34)
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where Jij ∈ so(W ), Kijk ∈ W and Lijkℓ ∈ R are skewsymmetric in their indices, [−,−]i :
W ×W →W is an alternating bilinear map which in addition obeys

〈[x, y]i, z〉 = 〈x, [y, z]i〉 , (35)

and [−,−,−]W : W ×W ×W → W is an alternating trilinear map which obeys

〈[x, y, z]W , w〉 = −〈[x, y, w]W , z〉 . (36)

The following lemma is the result of a straightforward, if somewhat lengthy, calculation.

Lemma 3. The fundamental identity (1) of the 3-Lie algebra V defined by (34) is equivalent

to the following conditions, for all t, w, x, y, z ∈W :

[t, w, [x, y, z]W ]W = [[t, w, x]W , y, z]W + [x, [t, w, y]W , z]W + [x, y, [t, w, z]W ]W (37a)

[w, [x, y, z]W ]i = [[w, x]i, y, z]W + [x, [w, y]i, z]W + [x, y, [w, z]i]W (37b)

[x, y, [z, t]i]W = [z, t, [x, y]i]W + [[x, y, z]W , t]i + [z, [x, y, t]W ]i (37c)

Jij[x, y, z]W = [Jijx, y, z]W + [x, Jijy, z]W + [x, y, Jijz]W (37d)

Jij [x, y, z]W − [x, y, Jijz]W = [[x, y]i, z]j − [[x, y]j , z]i (37e)

[x, y,Kijk]W = Jjk[x, y]i + Jki[x, y]j + Jij [x, y]k (37f)

[Jijx, y, z]W = [[x, y]i, z]j + [[y, z]j, x]i + [[z, x]i, y]j (37g)

Jij[x, y, z]W = [z, [x, y]j]i + [x, [y, z]j]i + [y, [z, x]j]i (37h)

[x, y,Kijk]W = Jij[x, y]k − [Jijx, y]k − [x, Jijy]k (37i)

Jik[x, y]j − Jij [x, y]k = [Jjkx, y]i + [x, Jjky]i (37j)

[x, Jjky]i = [Jijx, y]k + [Jkix, y]j + Jjk[x, y]i (37k)

[Kijk, x]ℓ = [Kℓij, x]k + [Kℓjk, x]i + [Kℓki, x]j (37l)

[Kijk, x]ℓ − [Kijℓ, x]k = (JijJkℓ − JkℓJij) x (37m)

[x,Kjkℓ]i = (JjkJiℓ + JkℓJij + JjℓJki)x (37n)

JimKjkℓ = JijKkℓm + JikKℓmj + JiℓKjkm (37o)

JijKkℓm = JℓmKijk + JmkKijℓ + JkℓKijm (37p)

〈Kijm, Knkℓ〉 + 〈Kijk, Kℓmn〉 = 〈Kijn, Kkℓm〉 + 〈Kijℓ, Kmnk〉 . (37q)

Of course, not all of these equations are independent, but we will not attempt to select a
minimal set here, since we will be able to dispense with some of the equations easily.

2.2.2. W is abelian. Equation (37a) says that W becomes a 3-Lie algebra under [−,−,−]W
which is metric by (36). Since W is positive-definite, it is reductive [6–9], whence isomorphic
to an orthogonal direct sum W = S⊕A, where S is semisimple and A is abelian. Furthermore,
S is an orthogonal direct sum of several copies of the unique positive-definite simple 3-Lie
algebra S4 [4, 20]. We will show that as metric 3-Lie algebras V = S ⊕ S⊥, whence if V is
indecomposable then S = 0 and W = A is abelian as a 3-Lie algebra. This is an extension of
the result in [9] by which semisimple 3-Lie algebras S factorise out of one-dimensional double
extensions, and we will, in fact, follow a similar method to the one in [9] by which we perform
an isometry on V which manifestly exhibits a nondegenerate ideal isomorphic to S as a 3-Lie
algebra.
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Consider then the isometry ϕ : V → V , defined by

ϕ(vi) = vi ϕ(ui) = ui − si − 1
2

r
∑

j=1

〈si, sj〉 vj ϕ(x) = x+
r

∑

i=1

〈si, x〉 vi, (38)

for x ∈ W and for some si ∈ W . (This is obtained by extending the linear map vi → vi and
ui 7→ ui − si to an isometry of V .) Under ϕ the 3-brackets (34) take the following form

[ϕ(ui), ϕ(uj), ϕ(uk)] = ϕ(Kϕ
ijk) +

r
∑

ℓ=1

Lϕ
ijkℓvℓ

[ϕ(ui), ϕ(uj), ϕ(x)] = ϕ(Jϕ
ijx) −

r
∑

k=1

〈

Kϕ
ijk, x

〉

vk

[ϕ(ui), ϕ(x), ϕ(y)] = ϕ([x, y]ϕi ) −
r

∑

j=1

〈

x, Jϕ
ijy

〉

vj

[ϕ(x), ϕ(y), ϕ(z)] = ϕ([x, y, z]W ) −
r

∑

i=1

〈[x, y]ϕi , z〉 vi,

(39)

where

[x, y]ϕi = [x, y]i + [si, x, y]W

Jϕ
ijx = Jijx+ [si, x]j − [sj, x]i + [si, sj, x]W

Kϕ
ijk = Kijk − Jijsk − Jjksi − Jkisj + [si, sj]k + [sj, sk]i + [sk, si]j − [si, sj, sk]W

Lϕ
ijkℓ = Lijkℓ + 〈Kjkℓ, si〉 − 〈Kkℓi, sj〉 + 〈Kℓij, sk〉 − 〈Kijk, sℓ〉

− 〈si, Jkℓsj〉 − 〈sk, Jjℓsi〉 − 〈sj , Jiℓsk〉 + 〈sℓ, Jjksi〉 + 〈sℓ, Jkisj〉 + 〈sℓ, Jijsk〉
+ 〈[si, sj]ℓ, sk〉 − 〈[si, sj]k, sℓ〉 − 〈[sk, si]j, sℓ〉 − 〈[sj , sk]i, sℓ〉 + 〈[si, sj, sk]W , sℓ〉 .

(40)

Lemma 4. There exists si ∈ S such that the following conditions are met for all x ∈ S:

[x,−]ϕi = 0 Jϕ
ijx = 0

〈

Kϕ
ijk, x

〉

= 0. (41)

Assuming for a moment that this is the case, the only nonzero 3-brackets involving elements
in ϕ(S) are

[ϕ(x), ϕ(y), ϕ(z)] = ϕ([x, y, z]W ), (42)

and this means that ϕ(S) is a nondegenerate ideal of V , whence V = ϕ(S) ⊕ ϕ(S)⊥. But this
violates the indecomposability of V , unless S = 0.

Proof of the lemma. To show the existence of the si, let us decompose S = S
(1)
4 ⊕ · · · ⊕ S

(m)
4

into m copies of the unique simple positive-definite 3-Lie algebra S4. As shown in [9, §3.2],
since Jij and [x,−]i define skewsymmetric derivations of W , they preserve the decomposition
of W into S ⊕ A and that of S into its simple factors. One consequence of this fact is that
Jijx ∈ S for all x ∈ S and [x, y]i ∈ S for all x, y ∈ S, and similarly if we substitute S for
any of its simple factors in the previous statement. Notice in addition that putting i = j in
equation (37g), [−,−]i obeys the Jacobi identity. Hence on any one of the simple factors of S
— let’s call it generically S4 — the bracket [−,−]i defines the structure of a four-dimensional
Lie algebra. This Lie algebra is metric by equation (35) and positive definite. There are (up to
isomorphism) precisely two four-dimensional positive-definite metric Lie algebras: the abelian
Lie algebra and so(3) ⊕ R. In either case, as shown in [9, §3.2], there exists a unique si ∈ S4

such that [si, x, y]W = [x, y]i for x, y ∈ S4. (In the former case, si = 0.) Since this is true for all
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simple factors, we conclude that there exists si ∈ S such that [si, x, y]W = [x, y]i for x, y ∈ S
and for all i.

Now equation (37g) says that for all x, y, z ∈ S,

[Jijx, y, z]W = [[x, y]i, z]j + [[y, z]j , x]i + [[z, x]i, y]j

= [sj , [si, x, y]W , z]W + [si, [sj, y, z]W , x]W + [sj, [si, z, x]W , y]W

= [[si, sj, x]W , y, x]W , using (37a)

which implies that Jijx− [si, sj, x]W centralises S, and thus is in A. However, for x ∈ S, both
Jijx ∈ S and [si, sj , x]W ∈ S, so that Jijx = [si, sj, x]W . Similarly, equation (37i) says that for
all x, y ∈ S,

[x, y,Kijk]W = Jij[x, y]k − [Jijx, y]k − [x, Jijy]k

= [si, sj, [sk, x, y]W ]W − [sk, [si, sj, x]W , y]W − [sk, x, [si, sjy]W ]W

= [[si, sj, sk]W , x, y]W , using (37a)

which implies that Kijk − [si, sj , sk]W centralises S, whence Kijk − [si, sj, sk]W = KA
ijk ∈ A.

Finally, using the explicit formulae for Jϕ
ij and Kϕ

ijk in equation (40), we see that for all all
x ∈ S,

Jϕ
ijx = Jijx+ [si, x]j − [sj , x]i + [si, sj, x]W

= [si, sj , x]W + [sj , si, x]W − [si, sj, x]W + [si, sj, x]W = 0

and

Kϕ
ijk = Kijk − Jijsk − Jjksi − Jkisj + [si, sj]k + [sj , sk]i + [sk, si]j − [si, sj, sk]W

= KA
ijk + [si, sj, sk]W − [si, sj, sk]W − [sj, sk, si]W − [sk, si, sj]W

+ [sk, si, sj]W + [si, sj , sk]W + [sj, sk, si]W − [si, sj, sk]W = KA
ijk,

whence
〈

Kϕ
ijk, x

〉

= 0 for all x ∈ S. �

We may summarise the above discussion as follows.

Lemma 5. Let V be a finite-dimensional indecomposable metric 3-Lie algebra of index r > 0
with a maximally isotropic centre. Then as a vector space

V =

r
⊕

i=1

(Rui ⊕ Rvi) ⊕W, (43)

where W is positive-definite, ui, vi ⊥ W , 〈ui, uj〉 = 0, 〈vi, vj〉 = 0 and 〈ui, vj〉 = δij. The vi

span the maximally isotropic centre. The nonzero 3-brackets are given by

[ui, uj, uk] = Kijk +

r
∑

ℓ=1

Lijkℓvℓ

[ui, uj, x] = Jijx−
r

∑

k=1

〈Kijk, x〉 vk

[ui, x, y] = [x, y]i −
r

∑

j=1

〈x, Jijy〉 vj

[x, y, z] = −
r

∑

i=1

〈[x, y]i, z〉 vi,

(44)
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for all x, y, z ∈ W and for some Lijkℓ ∈ R, Kijk ∈ W , Jij ∈ so(W ), all of which are totally

skewsymmetric in their indices, and bilinear alternating brackets [−,−]i : W ×W → W satis-

fying equation (35). Furthermore, the fundamental identity of the 3-brackets (44) is equivalent

to the following conditions on Kijk, Jij and [−,−]i:

[x, [y, z]i]j = [[x, y]j, z]i + [y, [x, z]j]i (45a)

[[x, y]i, z]j = [[x, y]j, z]i (45b)

Jij[x, y]k = [Jijx, y]k + [x, Jijy]k (45c)

0 = Jjℓ[x, y]i + Jℓi[x, y]j + Jij[x, y]ℓ (45d)

[Kijk, x]ℓ − [Kijℓ, x]k = (JijJkℓ − JkℓJij) x (45e)

[x,Kjkℓ]i = (JjkJiℓ + JkℓJij + JjℓJki)x (45f)

JijKkℓm = JℓmKijk + JmkKijℓ + JkℓKijm (45g)

0 = 〈Kijn, Kkℓm〉 + 〈Kijℓ, Kmnk〉 − 〈Kijm, Knkℓ〉 − 〈Kijk, Kℓmn〉 . (45h)

There are less equations in (45) than are obtained from (37) by simply making W abelian.
It is not hard to show that the equations in (45) imply the rest. The study of equations (45)
will take us until the end of this section. The analysis of these conditions will break naturally
into several steps. In the first step we will solve equations (45a) and (45b) for the [−,−]i. We
will then solve equations (45c) and (45d), which will turn allow us to solve equations (45e) and
(45f) for the Jij. Finally we will solve equation (45g). We will not solve equation (45h). In
fact, this equation defines an algebraic variety (an intersection of conics) which parametrises
these 3-algebras.

2.2.3. Solving for the [−,−]i. Condition (45a) for i = j says that [−,−]i defines a Lie algebra
structure on W , denoted gi. By equation (35), gi is a metric Lie algebra. Since the inner
product on W is positive-definite, gi is reductive, whence gi = [gi, gi] ⊕ zi, where si := [gi, gi]
is the semisimple derived ideal of gi and zi is the centre of gi. The following lemma will prove
useful.

Lemma 6. Let gi, i = 1, . . . , r, be a family of reductive Lie algebras sharing the same underlying

vector space W and let [−,−]i denote the Lie bracket of gi. Suppose that they satisfy equations

(45a) and (45b) and in addition that one of these Lie algebras, g1 say, is simple. Then for all

x, y ∈W ,

[x, y]i = κi[x, y]1, (46)

where κi ∈ R.

Proof. Equation (45a) says that for all x ∈ W , adi x := [x,−]i is a derivation of gj , for all i, j.
In particular, ad1 x is a derivation of gi. Since derivations preserve the centre, ad1 x : zi → zi,
whence the subspace zi is an ideal of g1. Since by hypothesis, g1 is simple, we must have that
either zi = W , in which case gi is abelian and the lemma holds with κi = 0, or else zi = 0, in
which case gi is semisimple. It remains therefore to study this case.

Equation (45a) again says that adi x is a derivation of g1. Since all derivations of g1 are
inner, this means that there is some element y such that adi x = ad1 y. This element is
moreover unique because ad1 has trivial kernel. In other words, this defines a linear map

ψi : gi → g1 by adi x = ad1 ψix ∀x ∈ W. (47)

This linear map is a vector space isomorphism since kerψi ⊂ ker adi = 0, for gi semisimple.
Now suppose that I ⊳ gi is an ideal, whence adi(x)I ⊂ I for all x ∈ gi. This means that
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ad1(y)I ⊂ I for all y ∈ g1, whence I is also an ideal of g1. Since g1 is simple, this means that
I = 0 or else I = W ; in other words, gi is simple.

Now for all x, y, z ∈W , we have

[ψi[x, y]i, z]1 = [[x, y]i, z]i by equation (47)

= [x, [y, z]i]i − [y, [x, z]i]i by the Jacobi identity of gi

= [ψix, [ψiy, z]1]1 − [ψiy, [ψix, z]1]1 by equation (47)

= [[ψix, ψiy]1, z]1 by the Jacobi identity of g1

and since g1 has trivial centre, we conclude that

ψi[x, y]i = [ψix, ψiy]1,

whence ψi : gi → g1 is a Lie algebra isomorphism.
Next, condition (45b) says that ad1[x, y]i = adi[x, y]1, whence using equation (47), we find

that ad1[x, y]i = ad1 ψi[x, y]1, and since ad1 has trivial kernel, [x, y]i = ψi[x, y]1. We may
rewrite this equation as adi x = ψi ad1 x for all x, which again by virtue of (47), becomes
ad1 ψix = ψi ad1 x, whence ψi commutes with the adjoint representation of g1. Since g1 is
simple, Schur’s Lemma says that ψi must be a multiple, κi say, of the identity. In other words,
adi x = κi ad1 x, which proves the lemma. �

Let us now consider the general case when none of the gi are simple. Let us focus on two
reductive Lie algebras, gi = zi ⊕ si, for i = 1, 2 say, sharing the same underlying vector space
W . We will further decompose si into its simple ideals

si =

Ni
⊕

α=1

sα
i . (48)

For every x ∈ W , ad1 x is a derivation of g2, whence it preserves the centre z2 and each simple
ideal s

β
2 . This means that z2 and s

β
2 are themselves ideals of g1, whence

z2 = E0 ⊕
⊕

α∈I0

sα
1 and s

β
2 = Eβ ⊕

⊕

α∈Iβ

sα
1 ∀β ∈ {1, 2, . . . , N2} , (49)

and where the index sets I0, I1, . . . , IN2 define a partition of {1, . . . , N1}, and

z1 = E0 ⊕ E1 ⊕ · · · ⊕ EN2 (50)

is an orthogonal decomposition of z1. But now notice that the restriction of g1 to Eβ⊕
⊕

α∈Iβ
sα
1

is reductive, whence we may apply Lemma 6 to each simple s
β
2 in turn. This allows us to

conclude that for each β, either s
β
2 = Eβ or else s

β
2 = sα

1 , for some α ∈ {1, 2, . . . , N1} which
depends on β, and in this latter case, [x, y]

s
β
2

= κ[x, y]sα
1
, for some nonzero constant κ.

This means that, given any one Lie algebra gi, any other Lie algebra gj in the same family is
obtained by multiplying its simple factors by some constants (which may be different in each
factor and may also be zero) and maybe promoting part of its centre to be semisimple.

The metric Lie algebras gi induce the following orthogonal decomposition of the underlying
vector space W . We let W0 =

⋂r
i=1 zi be the intersection of all the centres of the reductive Lie

algebras gi. Then we have the following orthogonal direct sum W = W0 ⊕
⊕N

α=1Wα, where
restricted to each Wα>0 at least one of the Lie algebras, gi say, is simple and hence all other
Lie algebras gj 6=i are such that for all x, y ∈Wα,

[x, y]j = κα
ij[x, y]i ∃κα

ij ∈ R. (51)



18 DE MEDEIROS, FIGUEROA-O’FARRILL, MÉNDEZ-ESCOBAR, RITTER

To simplify the notation, we define a semisimple Lie algebra structure g on the perpendicular
complement of W0, whose Lie bracket [−,−] is defined in such a way that for all x, y ∈ Wα,
[x, y] := [x, y]i, where i ∈ {1, 2, . . . , r} is the smallest such integer for which the restriction of
gi to Wα is simple. (That such an integer i exists follows from the definition of W0 and of the
Wα.) It then follows that the restriction to Wα of every other gj 6=i is a (possibly zero) multiple
of g.

We summarise this discussion in the following lemma, which summarises the solution of
equations (45a) and (45b).

Lemma 7. Let gi, i = 1, . . . , r, be a family of metric Lie algebras sharing the same underlying

euclidean vector space W and let [−,−]i denote the Lie bracket of gi. Suppose that they satisfy

equations (45a) and (45b). Then there is an orthogonal decomposition

W = W0 ⊕
N

⊕

α=1

Wα, (52)

where

[x, y]i =

{

0 if x, y ∈W0;

κα
i [x, y] if x, y ∈Wα,

(53)

for some κα
i ∈ R and where [−,−] are the Lie brackets of a semisimple Lie algebra g with

underlying vector space
⊕N

α=1 Wα.

2.2.4. Solving for the Jij. Next we study the equations (45c) and (45d), which involve only Jij.
Equation (45c) says that each Jij is a derivation over the gk for all i, j, k. Since derivations
preserve the centre, every Jij preserves the centre of every gk and hence it preserves their
intersection W0. Since Jij preserves the inner product, it also preserves the perpendicular
complement of W0 in W , which is the underlying vector space of the semisimple Lie algebra
g of the previous lemma. Equation (45c) does not constrain the component of Jij acting on
W0 since all the [−,−]k vanish there, but it does constrain the components of Jij acting on
⊕N

α=1Wα. Fix some α and let x, y ∈Wα. Then by virtue of equation (53), equation (45c) says
that

κα
k (Jij[x, y] − [Jijx, y] − [x, Jijy]) = 0. (54)

Since, given any α there will be at least some k for which κα
k 6= 0, we see that Jij is a derivation

of g. Since g is semisimple, this derivation is inner, where there exists a unique zij ∈ g, such
that Jijy = [zij , y] for all y ∈ g. Since the simple ideals of g are submodules under the adjoint
representation, Jij preserves each of the simple ideals and hence it preserves the decomposition
(52). Let zα

ij denote the component of zij along Wα. Equation (45d) can now be rewritten for
x, y ∈Wα as

κα
i [zα

jℓ, [x, y]] + κα
j [zα

ℓi, [x, y]] + κα
ℓ [zα

ij , [x, y]] = 0. (55)

Since g has trivial centre, this is equivalent to

κα
i z

α
jℓ + κα

j z
α
ℓi + κα

ℓ z
α
ij = 0, (56)

which can be written more suggestively as κα ∧ zα = 0, where κα ∈ Rr and zα ∈ Λ2Rr ⊗Wα.
This equation has as unique solution zα = κα ∧ sα, for some sα ∈ Rr ⊗Wα, or in indices

zα
ij = κα

i s
α
j − κα

j s
α
i ∃sα

i ∈Wα. (57)
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Let si =
∑

α s
α
i ∈ g and consider now the isometry ϕ : V → V defined by

ϕ(vi) = vi

ϕ(z) = z

ϕ(ui) = ui − si − 1
2

∑

j

〈si, sj〉 vj

ϕ(x) = x+
∑

i

〈si, x〉 vi,

(58)

for all z ∈ W0 and all x ∈
⊕N

α=1 Wα. The effect of such a transformation on the 3-brackets
(44) is an uninteresting modification of Kijk and Lijkℓ and the more interesting disappearance
of Jij from the 3-brackets involving elements in Wα. Indeed, for all x ∈ Wα, we have

[ϕ(ui), ϕ(uj), ϕ(x)] = [ui − si, uj − sj , x]

= [ui, uj, x] + [uj, si, x] − [ui, sj, x] + [si, sj, x]

= Jijx+ [si, x]j − [sj , x]i + central terms

= [zα
ij , x] + κα

j [sα
i , x] − κα

i [sα
j , x] + central terms

= [zα
ij + κα

j s
α
i − κα

i s
α
j , x] + central terms

= 0 + central terms,

where we have used equation (57).
This means that without loss of generality we may assume that Jijx = 0 for all x ∈ Wα for

any α. Now consider equation (45f) for x ∈
⊕N

α=1Wα. The right-hand side vanishes, whence
[Kijk, x]ℓ = 0. Also if x ∈ W0, then [Kijk, x]ℓ = 0 because x is central with respect to all gℓ.
Therefore we see that Kijk is central with respect to all gℓ, and hence Kijk ∈W0.

In other words, we have proved the following

Lemma 8. In the notation of Lemma 7, the nonzero 3-brackets for V may be brought to the

form

[ui, uj, uk] = Kijk +
r

∑

ℓ=1

Lijkℓvℓ

[ui, uj, x0] = Jijx0 −
r

∑

k=1

〈Kijk, x0〉 vk

[ui, x0, y0] = −
r

∑

j=1

〈x0, Jijy0〉 vj

[ui, xα, yα] = κα
i [x, y]

[xα, yα, zα] = −〈[xα, yα], zα〉
r

∑

i=1

κα
i vi,

(59)

for all xα, yα, zα ∈ Wα, x0, y0 ∈ W0 and for some Lijkℓ ∈ R, Kijk ∈ W0 and Jij ∈ so(W0), all

of which are totally skewsymmetric in their indices.

Since their left-hand sides vanish, equations (45e) and (45f) become conditions on Jij ∈
so(W0):

JijJkℓ − JkℓJij = 0, (60)

JjkJiℓ + JkℓJij + JjℓJki = 0. (61)
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The first condition says that the Jij commute, whence since the inner product on W0 is positive-
definite, they must belong to the same Cartan subalgebra h ⊂ so(W0). Let Hπ, for π =
1, . . . , ⌊dimW0

2
⌋, denote a basis for h, with eachHπ corresponding to the generator of infinitesimal

rotations in mutually orthogonal 2-planes in W0. In particular, this means that HπH̺ = 0 for
π 6= ̺ and that H2

π = −Ππ, with Ππ the orthogonal projector onto the 2-plane labelled by
π. We write Jπ

ij ∈ R for the component of Jij along Hπ. Fixing π we may think of Jπ
ij as

the components of Jπ ∈ Λ2Rr. Using the relations obeyed by the Hπ, equation (61) separates
into ⌊dim W0

2
⌋ equations, one for each value of π, which in terms of Jπ can be written simply as

Jπ ∧Jπ = 0. This is a special case of a Plücker relation and says that Jπ is decomposable; that
is, Jπ = ηπ ∧ ζπ for some ηπ, ζπ ∈ Rr. In other words, the solution of equations (60) and (61) is

Jij =
∑

π

(

ηπ
i ζ

π
j − ηπ

j ζ
π
i

)

Hπ (62)

living in a Cartan subalgebra h ⊂ so(W0).

2.2.5. Solving for the Kijk. It remains to solve equations (45g) and (45h) for Kijk. We shall
concentrate on the linear equation (45g). This is a linear equation on K ∈ Λ3Rr ⊗W0 and says
that it is in the kernel of a linear map

Λ3Rr ⊗W0 −−−→ Λ2Rr ⊗ Λ3Rr ⊗W0 (63)

defined by

Kijk 7→ JijKkℓm − JℓmKijk − JmkKijℓ − JkℓKijm. (64)

The expression in the right-hand side is manifestly skewsymmetric in ij and kℓm separately,
whence it belongs to Λ2Rr ⊗ Λ3Rr ⊗W0 as stated above. For generic r (here r ≥ 5) we may
decompose

Λ2
R

r ⊗ Λ3
R

r = Y R
r ⊕ Y R

r ⊕ Λ5
R

r, (65)

where Y Young tableau denotes the corresponding Young symmetriser representation. Then one
can see that the right-hand side of (64) has no component in the first of the above summands
and hence lives in the remaining two summands, which are isomorphic to Rr ⊗ Λ4Rr.

We now observe that via an isometry of V of the form

ϕ(vi) = vi

ϕ(xα) = xα

ϕ(ui) = ui + ti − 1
2

∑

j

〈ti, tj〉 vj

ϕ(x0) = x0 −
∑

i

〈x0, ti〉 vi,

(66)

for ti ∈ W0, the form of the 3-brackets (59) remains invariant, but with Kijk and Lijkℓ trans-
forming by

Kijk 7→ Kijk + Jijtk + Jjkti + Jkitj , (67)

and

Lijkℓ 7→ Lijkℓ + 〈Kijk, tℓ〉 − 〈Kℓij, tk〉 + 〈Kkℓi, tj〉 − 〈Kjkℓ, ti〉
+ 〈Jijtk, tℓ〉 + 〈Jkitj , tℓ〉 + 〈Jjkti, tℓ〉 + 〈Jiℓtj , tk〉 + 〈Jjℓtk, ti〉 + 〈Jkℓti, tj〉 ,

(68)
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respectively. In particular, this means that there is an ambiguity in Kijk, which can be thought
of as shifting it by the image of the linear map

Rr ⊗W0 −−−→ Λ3Rr ⊗W0 (69)

defined by

ti 7→ Jijtk + Jjkti + Jkitj . (70)

The two maps (63) and (69) fit together in a complex

Rr ⊗W0 −−−→ Λ3Rr ⊗W0 −−−→ Rr ⊗ Λ4Rr ⊗W0, (71)

where the composition vanishes precisely by virtue of equations (60) and (61). We will show
that this complex is acyclic away from the kernel of J , which will mean that without loss of
generality we can take Kijk in the kernel of J subject to the final quadratic equation (45h).

Let us decompose W0 into an orthogonal direct sum

W0 =























(dim W0)/2
⊕

π=1

Eπ, if dimW0 is even, and

Rw ⊕
(dim W0−1)/2

⊕

π=1

Eπ, if dimW0 is odd,

(72)

where Eπ are mutually orthogonal 2-planes and, in the second case, w is a vector perpendicular
to all of them. On Eπ the Cartan generator Hπ acts as a complex structure, and hence we may
identify each Eπ with a complex one-dimensional vector space and Hπ with multiplication by
i. This decomposition of Wπ allows us to decompose Kijk = Kw

ijk +
∑

π K
π
ijk, where the first

term is there only in the odd-dimensional situation and the Kπ
ijk are complex numbers. The

complex (71) breaks up into ⌊dimW0

2
⌋ complexes, one for each value of π. If Jπ = 0 then Kπ

ijk

is not constrained there, but if Jπ = ηπ ∧ ζπ 6= 0 the complex turns out to have no homology,
as we now show.

Without loss of generality we may choose the vectors ηπ and ζπ to be the elementary vectors
e1 and e2 in Rr, so that Jπ has a Jπ

12 = 1 and all other Jπ
ij = 0. Take i = 1 and j = 2 in the

cocycle condition (63), to obtain

Kπ
kℓm = Jπ

ℓmK
π
12k + Jπ

mkK
π
12ℓ + Jπ

kℓK
π
12m. (73)

It follows that if any two of k, ℓ,m > 2, then Kπ
kℓm = 0. In particular Kπ

1ij = Kπ
2ij = 0 for all

i, j > 2, whence only Kπ
12k for k > 2 can be nonzero. However for k > 2, Kπ

12k = Jπ
12ek, with

ek the kth elementary vector in Rr, and hence Kπ
12k is in the image of the map (69); that is,

a coboundary. This shows that we may assume without loss of generality that Kπ
ijk = 0. In

summary, the only components of Kijk which survive are those in the kernel of all the Jij. It
is therefore convenient to split W0 into an orthogonal direct sum

W0 = E0 ⊕
⊕

π

Eπ, (74)

where on each 2-plane Eπ, Jπ = ηπ ∧ ζπ 6= 0, whereas Jijx = 0 for all x ∈ E0. Then we can
take Kijk ∈ E0.

Finally it remains to study the quadratic equation (45h). First of all we mention that
this equation is automatically satisfied for r ≤ 4. To see this notice that the equation is
skewsymmetric in k, ℓ,m, n, whence if r < 4 it is automatically zero. When r = 4, we have to
take k, ℓ,m, n all different and hence the equation becomes

〈Kij1, K234〉 − 〈Kij2, K341〉 + 〈Kij3, K412〉 − 〈Kij4, K123〉 = 0,
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which is skewsymmetric in i, j. There are six possible choices for i, j but by symmetry any
choice is equal to any other up to relabeling, so without loss of generality let us take i = 1 and
j = 2, whence the first two terms are identically zero and the two remaining terms satisfy

〈K123, K412〉 − 〈K124, K123〉 = 0,

which is identically true. This means that the cases of index 3 and 4 are classifiable using our
results. By contrast, the case of index 5 and above seems not to be tame. An example should
suffice. So let us take the case of r = 5 and dimE0 = 1, so that the Kijk can be taken to be
real numbers. The solutions to (45h) now describe the intersection of five quadrics in R10:

K125K134 −K124K135 +K123K145 = 0

K125K234 −K124K235 +K123K245 = 0

K135K234 −K134K235 +K123K345 = 0

K145K234 −K134K245 +K124K345 = 0

K145K235 −K135K245 +K125K345 = 0,

whence the solutions define an algebraic variety. One possible branch is given by setting K1ij =
0 for all i, j, which leaves undetermined K234, K235, K245 and K345. There are other branches
which are linearly related to this one: for instance, setting K2ij = 0, et cetera, but there are
also other branches which are not linearly related to it.

2.2.6. Summary and conclusions. Let us summarise the above results in terms of the following
structure theorem.

Theorem 9. Let V be a finite-dimensional indecomposable metric 3-Lie algebra of index r > 0
with a maximally isotropic centre. Then V admits a vector space decomposition into r +M +
N + 1 orthogonal subspaces

V =

r
⊕

i=1

(Rui ⊕ Rvi) ⊕
N

⊕

α=1

Wα ⊕
M

⊕

π=1

Eπ ⊕ E0, (75)

where Wα, Eπ and E0 are positive-definite subspaces with the Eπ being two-dimensional, and

where 〈ui, uj〉 = 〈vi, vj〉 = 0 and 〈ui, vj〉 = δij. The 3-Lie algebra is defined in terms of the

following data:

• 0 6= ηπ ∧ ζπ ∈ Λ2Rr for each π = 1, . . . ,M ,

• 0 6= κα ∈ R
r for each α = 1, . . . , N ,

• a metric simple Lie algebra structure gα on each Wα,

• L ∈ Λ4Rr, and

• K ∈ Λ3Rr ⊗ E0 subject to the equation

〈Kijn, Kkℓm〉 + 〈Kijℓ, Kmnk〉 − 〈Kijm, Knkℓ〉 − 〈Kijk, Kℓmn〉 = 0,
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by the following 3-brackets, 1

[ui, uj, uk] = Kijk +
r

∑

ℓ=1

Lijkℓvℓ

[ui, uj, x0] = −
r

∑

k=1

〈Kijk, x0〉 vk

[ui, uj, xπ] = Jπ
ijHπxπ

[ui, xπ, yπ] = −
r

∑

j=1

〈

xπ, J
π
ijHπyπ

〉

vj

[ui, xα, yα] = κα
i [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉
r

∑

i=1

κα
i vi,

(76)

for all x0 ∈ E0, xπ, yπ ∈ Eπ and xα, yα, zα ∈Wα, and where Jπ
ij = ηπ

i ζ
π
j −ηπ

j ζ
π
i and Hπ a complex

structure on each 2-plane Eπ. The resulting 3-Lie algebra is indecomposable provided that there

is no x0 ∈ E0 which is perpendicular to all the Kijk, whence in particular dimE0 ≤
(

r
3

)

.

2.3. Examples for low index. Let us now show how to recover the known classifications in
index ≤ 2 from Theorem 9.

Let us consider the case of minimal positive index r = 1. In that case, the indices i, j, k, l
in Theorem 9 can only take the value 1 and therefore Jij, Kijk and Lijkl are not present.
Indecomposability of V forces E0 = 0 and Eπ = 0, whence letting u = u1 and v = v1, we have
V = Ru⊕ Rv ⊕

⊕N
α=1 Wα as a vector space, with 〈u, u〉 = 〈v, v〉 = 0, 〈u, v〉 = 1 and

⊕N
α=1 Wα

euclidean. The 3-brackets are:

[u, xα, yα] = [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉 v,
(77)

for all xα, yα, zα ∈Wα and where we have redefined κα[xα, yα] → [xα, yα], which is a simple Lie
algebra on each Wα. This agrees with the classification of lorentzian 3-Lie algebras in [9] which
was reviewed in the introduction.

Let us now consider r = 2. According to Theorem 9, those with a maximally isotropic centre
may now have a nonvanishing J12 while Kijk and Lijkl are still absent. Indecomposability of

V forces E0 = 0. Therefore W0 =
⊕M

π=1Eπ and, as a vector space, V = Ru1 ⊕ Rv1 ⊕ Ru2 ⊕
Rv2 ⊕W0 ⊕

⊕N
α=1 Wα with 〈ui, uj〉 = 〈vi, vj〉 = 0, 〈ui, vj〉 = δij , ∀i, j = 1, 2 and W0 ⊕

⊕N
α=1 Wα

is euclidean. The 3-brackets are now:

[u1, u2, xπ] = Jxπ

[u1, xπ, yπ] = −〈xπ, Jyπ〉 v2

[u2, xπ, yπ] = 〈xπ, Jyπ〉 v1

[u1, xα, yα] = κα
1 [xα, yα]

[u2, xα, yα] = κα
2 [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉κα
1v1 − 〈[xα, yα], zα〉κα

2 v2,

(78)

1We understand tacitly that if a 3-bracket is not listed here it vanishes. Also every summation is written
explicitly, so the summation convention is not in force. In particular, there is no sum over π in the third and
fourth brackets.
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for all xπ, yπ ∈ Eπ and xα, yα, zα ∈ Wα. This agrees with the classification in [13] of finite-
dimensional indecomposable 3-Lie algebras of index 2 whose centre contains a maximally
isotropic plane. In that paper such algebras were denoted VIIIb(E, J, l, h, g, ψ) with underly-
ing vector space R(u, v) ⊕ R(e+, e−) ⊕ E ⊕ l ⊕ h ⊕ g with 〈u, u〉 = 〈v, v〉 = 〈e±, e±〉 = 0,
〈u, v〉 = 1 = 〈e+, e−〉 and all ⊕ orthogonal. The nonzero Lie 3-brackets are given by

[u, e−, x] = Jx

[u, x, y] = 〈Jx, y〉e+

[e−, x, y] = −〈Jx, y〉 v
[e−, h1, h2] = [h1, h2]h

[h1, h2, h3] = −〈[h1, h2]h, h3〉 e+

[u, g1, g2] = [ψg1, g2]g

[e−, g1, g2] = [g1, g2]g

[g1, g2, g3] = −〈[g1, g2]g, g3〉e+ − 〈[ψg1, g2]g, g3〉 v
[u, ℓ1, ℓ2] = [ℓ1, ℓ2]l

[ℓ1, ℓ2, ℓ3] = −〈[ℓ1, ℓ2]l, ℓ3〉 v,

(79)

where x, y ∈ E, h, hi ∈ h, gi ∈ g and ℓi ∈ l.
To see that this family of 3-algebras is of the type (78) it is enough to identify

u1 ↔ u v1 ↔ v u2 ↔ e− v2 ↔ e+ (80)

as well as

W0 ↔ E and

N
⊕

α=1

Wα ↔ l ⊕ h ⊕ g, (81)

where the last identification is not only as vector spaces but also as Lie algebras, and set

κ1|h = 0

κ1|l = 1

κ1|gα
= ψα

κ2|h = 1

κ2|l = 0

κ2|gα
= 1,

(82)

to obtain the map between the two families. As shown in [13] there are 9 different types of such
3-Lie algebras, depending on which of the four ingredients (E, J), l, h or (g, ψ) are present.

The next case is that of index r = 3, where there are up to 3 nonvanishing Jij and one
K123 := K, while Lijkl is still not present. Indecomposability of V forces dimE0 ≤ 1. As a
vector space, V splits up as

V =

3
⊕

i=1

(Rui ⊕ Rvi) ⊕
N

⊕

α=1

Wα ⊕
M

⊕

π=1

Eπ ⊕ E0, (83)

where all ⊕ are orthogonal except the second one, Wα, E0 and Eπ are positive-definite subspaces
with dimE0 ≤ 1, Eπ being two-dimensional, and where 〈ui, uj〉 = 〈vi, vj〉 = 0 and 〈ui, vj〉 = δij .
The 3-brackets are given by

[u1, u2, u3] = K

[ui, uj, x0] = −
r

∑

k=1

〈Kijk, x0〉 vk

[ui, uj, xπ] = Jπ
ijHπxπ

[ui, xπ, yπ] = −
r

∑

j=1

〈

xπ, J
π
ijHπyπ

〉

vj

[ui, xα, yα] = κα
i [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉
r

∑

i=1

κα
i vi,

(84)
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for all x0 ∈ E0, xπ, yπ ∈ Eπ and xα, yα, zα ∈ Wα, and where Jπ
ij = ηπ

i ζ
π
j − ηπ

j ζ
π
i and Hπ a

complex structure on each 2-plane Eπ.
Finally, let us remark that the family of admissible 3-Lie algebras found in [18] are included

in Theorem 9. In that paper, a family of solutions to equations (37) was found by setting
each of the Lie algebra structures [−,−]i to be nonzero in orthogonal subspaces of W . This
corresponds, in the language of this paper, to the particular case of allowing precisely one κα

i

to be nonvanishing in each Wα.
Notice that, as shown in (82), already in [13] there are examples of admissible 3-Lie algebras

of index 2 which are not of this form as both κ1 and κ2 might be nonvanishing in the gα factors.
To solve the rest of the equations, two ansätze are proposed in [18]:

• the trivial solution with nonvanishing J , i.e. κα
i = 0, Kijk = 0 for all i, j, k = 1, ..., r

and for all α; and
• precisely one κα

i = 1 for each α (and include those Wα’s where all κ’s are zero in W0)
and one Jij := J 6= 0 assumed to be an outer derivation of the reference Lie algebra
defined on W .

As pointed out in that paper, Lijkl is not constrained by the fundamental identity, so it can
in principle take any value, whereas the ansatz provided for Kijk is given in terms of solutions
of an equation equivalent to (45h). In the lagrangians considered, both Lijkl and Kijk are set
to zero.

One thing to notice is that in all these theories there is certain redundancy concerning the
index of the 3-Lie algebra. If the indices in the nonvanishing structures κα

i , Jij , Kijk and Lijkl

involve only numbers from 1 to r0, then any 3-Lie algebra with such nonvanishing structures
and index r ≥ r0 gives rise to the equivalent theories.

In this light, in the first ansatz considered, one can always define the non vanishing J to be
J12 and then the corresponding theory will be equivalent to one associated to the index-2 3-Lie
algebras considered in [13].

In the second case, the fact that J is an outer derivation implies that it must live on the
abelian part of W as a Lie algebra, since the semisimple part does not possess outer derivations.
This coincides with what was shown above, i.e., that J |Wα

= 0 for each α. Notice that each
Lie algebra [−,−]i identically vanishes in W0, therefore the structure constants of the 3-Lie
algebra do not mix J and [−,−]i. The theories in [18] corresponding to this ansatz also have
Kijk = 0, whence again they are equivalent to the theory corresponding to the index-2 3-Lie
algebra which was denoted V (E, J, h) in [13].

3. Bagger–Lambert lagrangians

In this section we will consider the physical properties of the Bagger–Lambert theory based
on the most general kind of admissible metric 3-Lie algebra, as described in Theorem 9.

In particular we will investigate the structure of the expansion of the corresponding Bagger–
Lambert lagrangians around a vacuum wherein the scalars in half of the null directions of the
3-Lie algebra take the constant values implied by the equations of motion for the scalars in
the remaining null directions, spanning the maximally isotropic centre. This technique was
also used in [18] and is somewhat reminiscent of the novel Higgs mechanism that was first
introduced by Mukhi and Papageorgakis [14] in the context of the Bagger–Lambert theory
based on the unique simple euclidean 3-Lie algebra S4. Recall that precisely this strategy has
already been employed in lorentzian signature in [12], for the class of Bagger–Lambert theories
found in [10–12] based on the unique admissible lorentzian metric 3-Lie algebra W (g), where it
was first appreciated that this theory is perturbatively equivalent to N = 8 super Yang–Mills
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theory on R1,2 with the euclidean semisimple gauge algebra g. That is, there are no higher
order corrections to the super Yang–Mills lagrangian here, in contrast with the infinite set of
corrections (suppressed by inverse powers of the gauge coupling) found for the super Yang–Mills
theory with su(2) gauge algebra arising from higgsing the Bagger–Lambert theory based on S4

in [14]. This perturbative equivalence between the Bagger–Lambert theory based on W (g) and
maximally supersymmetric Yang–Mills theory with euclidean gauge algebra g has since been
shown more rigorously in [15–17].

We will show that there exists a similar relation with N = 8 super Yang–Mills theory
after expanding around the aforementioned maximally supersymmetric vacuum the Bagger–
Lambert theories based on the more general physically admissible metric 3-Lie algebras we have
considered. However, the gauge symmetry in the super Yang–Mills theory is generally based on
a particular indefinite signature metric Lie algebra here that will be identified in terms of the
data appearing in Theorem 9. The physical properties of the these Bagger–Lambert theories
will be shown to describe particular combinations of decoupled super Yang-Mills multiplets
with euclidean gauge algebras and free maximally supersymmetric massive vector multiplets.
We will identify precisely how the physical moduli relate to the algebraic data in Theorem 9.
We will also note how the theories resulting from those finite-dimensional indefinite signature
3-Lie algebras considered in [18] are recovered.

3.1. Review of two gauge theories in indefinite signature. Before utilising the structural
results of the previous section, let us briefly review some general properties of the maximal N =
8 supersymmetric Bagger–Lambert and Yang–Mills theories in three-dimensional Minkowski
space that will be of interest to us, when the fields are valued in a vector space V equipped
with a metric of indefinite signature. We shall denote this inner product by 〈−,−〉 and take it
to have general indefinite signature (r, r+n). We can then define a null basis eA = (ui, vi, ea) for
V , with i = 1, ..., r, a = 1, ..., n, such that 〈ui, vj〉 = δij , 〈ui, uj〉 = 0 = 〈vi, vj〉 and 〈ea, eb〉 = δab.

For the sake of clarity in the forthcoming analysis, we will ignore the fermions in these
theories. Needless to say that they both have a canonical maximally supersymmetric completion
and none of the manipulations we will perform break any of the supersymmetries of the theories.

3.1.1. Bagger–Lambert theory. Let us begin by reviewing some details of the bosonic field con-
tent of the Bagger–Lambert theory based on the 3-bracket [−,−,−] defining a metric 3-Lie
algebra structure on V . The components of the canonical 4-form for the metric 3-Lie algebra
are FABCD := 〈[eA, eB, eC ], eD〉 (indices will be lowered and raised using the metric 〈eA, eB〉
and its inverse). The bosonic fields in the Bagger–Lambert theory have components XA

I and

(Ãµ)A
B = FA

BCDA
CD
µ , corresponding respectively to the scalars (I = 1, ..., 8 in the vector of

the so(8) R-symmetry) and the gauge field (µ = 0, 1, 2 on R
1,2 Minkowski space). Although the

supersymmetry transformations and equations of motion can be expressed in terms of (Ãµ)A
B,

the lagrangian requires it to be expressed as above in terms of AAB
µ .

The bosonic part of the Bagger–Lambert lagrangian is given by

L = −1
2
〈DµXI , D

µXI〉 + V (X) + LCS , (85)

where the scalar potential is

V (X) = − 1
12
〈[XI , XJ , XK ], [XI , XJ , XK ]〉 , (86)

the Chern–Simons term is

LCS = 1
2

(

AAB ∧ dÃAB + 2
3
AAB ∧ ÃAC ∧ ÃC

B

)

, (87)
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and Dµφ
A = ∂µφ

A + (Ãµ)A
Bφ

B defines the action on any field φ valued in V of the derivative

D that is gauge-covariant with respect to ÃA
B. The infinitesimal gauge transformations take

the form δφA = −Λ̃A
Bφ

B and δ(Ãµ)A
B = ∂µΛ̃A

B + (Ãµ)
A

CΛ̃C
B − Λ̃A

C(Ãµ)C
B, where Λ̃A

B =
FA

BCDΛCD in terms of an arbitrary skewsymmetric parameter ΛAB = −ΛBA.
If we now assume that the indefinite signature metric 3-Lie algebra above admits a maximally

isotropic centre which we can take to be spanned by the basis elements vi then the 4-form
components FviABC must all vanish identically. There are two important physical consequences
of this assumption. The first is that the covariant derivative DµX

ui

I = ∂µX
ui

I . The second is
that the tensors FABCD and FABC

GFDEFG = FABC
gFDEFg which govern all the interactions in

the Bagger–Lambert lagrangian contain no legs in the vi directions. Therefore the components
AviA

µ of the gauge field do not appear at all in the lagrangian while Xvi

I appear only in the
free kinetic term −DµX

ui

I ∂
µXvi

I = −∂µX
ui

I ∂
µXvi

I . Thus Xvi

I can be integrated out imposing
that each Xui

I be a harmonic function on R1,2 which must be a constant if the solution is to
be nonsingular. (We will assume this to be the case henceforth but singular monopole-type
solutions may also be worthy of investigation, as in [21].) It is perhaps just worth noting that,
in addition to setting Xui

I constant, one must also set the fermions in all the ui directions to
zero which is necessary and sufficient for the preservation of maximal supersymmetry here.

The upshot is that we now have −1
2
〈DµXI , D

µXI〉 = −1
2
DµX

a
ID

µXa
I (with contraction over

only the euclidean directions of V ) and each Xui

I is taken to be constant in (85). Since both
Xvi

I and AviA
µ are now absent, it will be more economical to define X i

I := Xui

I and Aia
µ := Auia

µ

henceforth.

3.1.2. Super Yang–Mills theory. Let us now perform an analogous review forN = 8 super Yang–
Mills theory, with gauge symmetry based on the Lie bracket [−,−] defining a metric Lie algebra
structure g on V . The components of the canonical 3-form on g are fABC := 〈[eA, eB], eC〉. The
bosonic fields in the theory consist of a gauge field AA

µ and seven scalar fields XA
I (where now

I = 1, ..., 7 in the vector of the so(7) R-symmetry) with all fields taking values in V . The field
strength for the gauge field takes the canonical form Fµν = [Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ]
in terms of the gauge-covariant derivative Dµ = ∂µ + [Aµ,−]. This theory is not scale-invariant
and has a dimensionful coupling constant κ.

The bosonic part of the super Yang-Mills lagrangian is given by

L
SY M(AA, XA

I , κ|g) = −1
2
〈DµXI , D

µXI〉 − κ2

4
〈[XI , XJ ], [XI , XJ ]〉 − 1

4κ2 〈Fµν , F
µν〉 . (88)

Noting explicitly the dependence on the data on the left hand side will be useful when we come
to consider super Yang-Mills theories with a much more elaborate gauge structure.

Assuming now that g admits a maximally isotropic centre, again spanned by the basis ele-
ments vi, then the 3-form components fviAB must all vanish identically. This property implies
DXui

I = dXui

I , F ui = dAui and that the tensors fABC and fAB
EfCDE = fAB

efCDe which govern
all the interactions contain no legs in the vi directions. Therefore Xvi

I and Avi only appear
linearly in their respective free kinetic terms, allowing them to be integrated out imposing that
Xui

I is constant and Aui is exact. Setting the fermions in all the ui directions to zero again
ensures the preservation of maximal supersymmetry.

The resulting structure is that all the inner products using 〈eA, eB〉 in (88) are to be replaced
with 〈ea, eb〉 while all Xui

I are to be taken constant and Aui = dφui, for some functions φui.
With both Xvi

I and Avi now absent, it will be convenient to define X i
I := Xui

I and φi := φui

henceforth.
Let us close this review by looking in a bit more detail at the physical properties of a particular

example of a super Yang–Mills theory in indefinite signature with maximally isotropic centre,
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whose relevance will become clear in the forthcoming sections. Four-dimensional Yang–Mills
theories based on such gauge groups were studied in [22]. The gauge structure of interest is
based on the lorentzian metric Lie algebra defined by the double extension d(E,R) of an even-
dimensional vector space E with euclidean inner product. Writing V = Ru ⊕ Rv ⊕ E as a
lorentzian vector space, the nonvanishing Lie brackets of d(E,R) are given by

[u, x] = Jx , [x, y] = −〈x, Jy〉 v , (89)

for all x, y ∈ E where the skewsymmetric endomorphism J ∈ so(E) is part of the data defining
the double extension. The canonical 3-form for d(E,R) therefore has only the components
fuab = Jab with respect to the euclidean basis ea on E. It will be convenient to take J to be
nondegenerate and so the eigenvalues of J2 will be negative-definite.

We shall define the positive number µ2 := Xu
I X

u
I as the SO(7)-norm-squared of the constant

7-vector Xu
I and the projection operator P u

IJ := δIJ − µ−2Xu
I X

u
J onto the hyperplane R6 ⊂ R7

orthogonal to Xu
I . It will also be convenient to define xa := Xu

I X
a
I as the projection of the

seventh super Yang–Mills scalar field along Xu
I and DΦ := dΦ − dφu ∧ JΦ where Φ can be

any p-form on R1,2 taking values in E. In terms of this data, the super Yang–Mills lagrangian
L SY M((dφu, Aa), (Xu

I , X
a
I ), κ|d(E,R)) can be more succinctly expressed as

− 1
2
P u

IJDµX
a
I D

µXa
J + κ2µ2

2
(J2)abP

u
IJX

a
IX

b
J − 1

4κ2 (2 D[µA
a
ν])(2 D

[µAν] a)

− 1
2µ2

(

Dµx
a + µ2JabAb

µ

) (

D
µxa + µ2JacAµ c

)

. (90)

From the first line we see that the six scalar fields P u
IJX

a
J are massive with mass-squared given

by the eigenvalues of the matrix −κ2µ2(J2)ab. All the fields couple to dφu through the covariant
derivative D, but the second line shows that only the seventh scalar xa couples to the gauge
field Aa. However, the gauge symmetry of (90) under the transformations δAa = Dλa and
δxa = −µ2Jabλb, for any parameter λa ∈ E, shows that xa is in fact pure gauge and can
be removed in (90) by fixing λa = µ−2(J−1)abxb. The remaining gauge symmetry of (90) is
generated by the transformations δφu = α and δΦ = αJΦ for all fields Φ ∈ E, where α is an
arbitrary scalar parameter. This is obvious since D = exp(φuJ)dexp(−φuJ) and therefore, one
can take D = d in (90) by fixing α = −φu.

Thus, in the gauge defined above, the lagrangian L SY M((dφu, Aa), (Xu
I , X

a
I ), κ|d(E,R)) be-

comes simply

− 1
2
P u

IJ∂µX
a
I ∂

µXa
J + κ2µ2

2
(J2)abP

u
IJX

a
IX

b
J − 1

4κ2 (2 ∂[µA
a
ν])(2 ∂

[µAν] a) + µ2

2
(J2)abA

a
µA

µ b , (91)

describing dimE decoupled free abelian N = 8 supersymmetric massive vector multiplets, each
of which contains bosonic fields given by the respective gauge field 1

κ
Aa

µ plus six scalars P u
IJX

a
I ,

all with the same mass-squared equal to the respective eigenvalue of −κ2µ2(J2)ab.
It is worth pointing out that one can also obtain precisely the theory above from a particular

truncation of an N = 8 super Yang–Mills theory with euclidean semisimple Lie algebra g. If one
introduces a projection operator PIJ onto a hyperplane R6 ⊂ R7 then one can rewrite the seven
scalar fields in this euclidean theory in terms of the six projected fields PIJX

a
J living on the

hyperplane plus the single scalar ya in the complementary direction. Unlike in the lorentzian
theory above however, this seventh scalar is not pure gauge. Indeed, if we expand the super
Yang–Mills lagrangian (88) for this euclidean theory around a vacuum where ya is constant then
this constant appears as a physical modulus of the effective field theory, namely it gives rise to
mass terms for the gauge field Aa and the six projected scalars PIJX

a
J . If one then truncates the

effective field theory to the Coulomb branch, such that the dynamical fields A and PIJXJ take
values in a Cartan subalgebra t < g (while the constant vacuum expectation value y ∈ g), then
the lagrangian takes precisely the form (91) after making the following identifications. First one



METRIC 3-LIE ALGEBRAS FOR UNITARY BAGGER–LAMBERT THEORIES 29

must take E = t whereby the gauge field Aa and coupling κ are the the same for both theories.
Second one must identify the six-dimensional hyperplanes occupied by the scalars Xa

I in both
theories such that P u

IJ in (91) is identified with PIJ here. Finally, the mass matrix for the
euclidean theory is −κ2[(ady)

2]ab which must be identified with −κ2µ2(J2)ab in (91). This last
identification requires some words of explanation. We have defined ady Φ := [y,Φ] for all Φ ∈ g,
where [−,−] denotes the Lie bracket on g. Since we have truncated the dynamical fields to
the Cartan subalgebra t, only the corresponding legs of (ady)

2 contribute to the mass matrix.
However, clearly y must not also be contained in t or else the resulting mass matrix would
vanish identically. Indeed, without loss of generality, one can take y to live in the orthogonal
complement t⊥ ⊂ g since it is only these components which contribute to the mass matrix.
Thus, although (ady)

2 can be nonvanishing on t, ady cannot. Thus we cannot go further and
equate ady with µJ , even though their squares agree on t. To summarise all this more succinctly,
after the aforementioned gauge-fixing of the lorentzian theory and truncation of the euclidean
theory, we have shown that

L
SY M ((dφu, A|E) , (Xu

I , P
u
IJXJ |E, x|E) , κ|d(E,R)) = L

SY M (A|E, (PIJXJ |E , y|E⊥) , κ|g) ,
(92)

where E = t, y ∈ t⊥ ⊂ g is constant and (ady)
2 = µ2J2 on t. Of course, it is not obvious that

one can always solve this last equation for y in terms of a given µ and J nor indeed whether
this restricts ones choice of g. However, it is the particular case of dimE = 2 that will be of
interest to us in the context of the Bagger–Lambert theory in 3.2.2 where we shall describe
a nontrivial solution for any rank-2 semisimple Lie algebra g. Obvious generalisations of this
solution give strong evidence that the equation can in fact always be solved.

3.2. Bagger–Lambert theory for admissible metric 3-Lie algebras. We will now substi-
tute the data appearing in Theorem 9 into the bosonic part of the Bagger–Lambert lagrangian
(85), that is after having integrated out Xvi

I to set all X i
I := Xui

I constant.
Since we will be dealing with components of the various tensors appearing in Theorem 9, we

need to introduce some index notation for components of the euclidean subspace
⊕N

α=1Wα ⊕
⊕M

π=1Eπ ⊕ E0. To this end we partition the basis ea = (eaα
, eaπ

, ea0) on the euclidean part
of the algebra, where subscripts denote a basis for the respective euclidean subspaces. For
example, aα = 1, ..., dimWα whose range can thus be different for each α. Similarly a0 =
1, ..., dimE0, while aπ = 1, 2 for each two-dimensional space Eπ. Since the decomposition
⊕N

α=1Wα ⊕⊕M
π=1Eπ ⊕E0 is orthogonal with respect to the euclidean metric 〈ea, eb〉 = δab, we

can take only the components 〈eaα
, ebα

〉 = δaαbα
, 〈eaπ

, ebπ
〉 = δaπbπ

and 〈ea0 , eb0〉 = δa0b0 to be
nonvanishing. Since these are all just unit metrics on the various euclidean factors then we will
not need to be careful about raising and lowering repeated indices, which are to be contracted
over the index range of a fixed value of α, π or 0. Summations of the labels α and π will be
made explicit.

In terms of this notation, we may write the data from Theorem 9 in terms of the following
nonvanishing components of the canonical 4-form FABCD of the algebra

Fuiaαbαcα
= κα

i faαbαcα

Fuiujaπbπ
=

(

ηπ
i ζ

π
j − ηπ

j ζ
π
i

)

ǫaπbπ

Fuiujuka0 = Kijka0

Fuiujukul
= Lijkl ,

(93)
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where faαbαcα
denotes the canonical 3-form for the simple metric Lie algebra structure gα on

Wα and we have used the fact that the 2x2 matrix Hπ has only components ǫaπbπ
= −ǫbπaπ

,
with ǫ12 = −1, on each 2-plane Eπ.

A final point of notational convenience will be to define Y AB := XA
I X

B
I and the projection

Xξ
I := ξiX

i
I for any ξ ∈ Rr. Combining these definitions allows us to write certain projections

which often appear in the lagrangian like Y ξς := Xξ
IX

ς
I and Y ξa := Xξ

IX
a
I for any ξ, ς ∈ Rr.

It will sometimes be useful to write Y ξξ ≡ ‖Xξ‖2 ≥ 0 where ‖Xξ‖ denotes the SO(8)-norm of

the vector Xξ
I . A similar shorthand will be adopted for projections of components of the gauge

field, so that Aξς
µ := ξiςjA

ij
µ and Aξa

µ := ξiA
ia
µ .

It will be useful to note that the euclidean components of the covariant derivative DµX
A
I =

∂µX
A
I + (Ãµ)A

BX
B
I from section 3.1.1 can be written

DµX
aα

I = ∂µX
aα

I − κα
i f

aαbαcα
(

2Aibα
µ Xcα

I + Abαcα
µ X i

I

)

=: DµX
aα

I − 2Baα

µ Xκα

I

DµX
aπ

I = ∂µX
aπ

I + 2 ηπ
i ζ

π
j ǫ

aπbπ
(

Aij
µX

bπ

I − Aibπ
µ Xj

I + Ajbπ
µ X i

I

)

= ∂µX
aπ

I + 2 ǫaπbπ

(

Aηπζπ

µ Xbπ

I −Aηπbπ
µ Xζπ

I + Aζπbπ
µ Xηπ

I

)

DµX
a0
I = ∂µX

a0
I −Kijk

a0Aij
µX

k
I .

(94)

The second line defines two new quantities on each Wα, namely Baα
µ := 1

2
faαbαcαAbαcα

µ and

the covariant derivative DµX
aα

I := ∂µX
aα

I − 2 faαbαcακα
i A

ibα
µ Xcα

I . The latter object is just the

canonical covariant derivative with respect to the projected gauge field A aα
µ := −2Aκαaα

µ on
each Wα. The associated field strength Fµν = [Dµ,Dν ] has components

F
aα = −2 κα

i

(

dAiaα − κα
j f

aαbαcαAibα ∧Ajcα
)

. (95)

Although somewhat involved, the nomenclature above will help us understand more clearly
the structure of the Bagger–Lambert lagrangian. Let us consider now the contributions to (85)
coming from the scalar kinetic terms, the sextic potential and the Chern–Simons term in turn.

The kinetic terms for the scalar fields give

− 1
2
〈DµXI , D

µXI〉 = −1
2

N
∑

α=1

DµX
aα

I DµXaα

I − 1
2

M
∑

π=1

DµX
aπ

I DµXaπ

I − 1
2
DµX

a0
I D

µXa0
I (96)

which expands to

N
∑

α=1

{

−1
2
DµX

aα

I D
µXaα

I + 2Xκα

I Baα

µ D
µXaα

I − 2 Y κακα

Baα

µ Bµ aα
}

+
M

∑

π=1

{

−1
2
∂µX

aπ

I ∂µXaπ

I − 2 ∂µXaπ

I ǫaπbπ

(

Aηπζπ

µ Xbπ

I − Aηπbπ

µ Xζπ

I + Aζπbπ

µ Xηπ

I

)

−2
(

Aηπζπ

µ Xaπ

I − Aηπaπ
µ Xζπ

I + Aζπaπ
µ Xηπ

I

)(

Aµ ηπζπ

Xaπ

I − Aµ ηπaπXζπ

I + Aµ ζπaπXηπ

I

)}

− 1
2
∂µX

a0
I ∂

µXa0
I +Kijk

a0Aij
µ ∂

µY ka0 − 1
2
Kijka0Klmna0Y

klAij
µA

µ mn . (97)
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The scalar potential can be written V (X) = V W (X) + V E(X) + V E0(X) where

V
W (X) = −1

4

N
∑

α=1

faαbαeαf cαdαeα
(

Y κακα

Y aαcα − Y καaαY καcα
)

Y bαdα

V
E(X) = −1

2

M
∑

π=1

{

Y aπaπ
(

Y ηπηπ

Y ζπζπ − (Y ηπζπ

)2
)

+ 2 Y ηπaπY ζπaπY ηπζπ

−Y ηπaπY ηπaπY ζπζπ − Y ζπaπY ζπaπY ηπηπ}

V
E0(X) = − 1

12
Kijka0Klmna0Y

ilY jmY kn .

(98)

Notice that V E0(X) is constant and will be ignored henceforth.
And finally, the Chern–Simons term can be written LCS = L W

CS + L E
CS + L

E0
CS where

L
W
CS = −2

N
∑

α=1

Baα ∧ F
aα

L
E
CS = −4

M
∑

π=1

{

ǫaπbπ Aηπaπ ∧Aζπbπ + 2Aηπζπ ∧ Aηπaπ ∧Aζπaπ − 1
2
ǫaπbπAaπbπ ∧ dAηπζπ}

L
E0
CS = 2Kijka0A

ij ∧ dAka0 − 1
3
Kikla0Kjmna0A

ij ∧ Akl ∧Amn + 1
2
LijklA

ij ∧ dAkl .

(99)

These expressions are valid only up to total derivative terms that will be discarded.
Clearly there is a certain degree of factorisation for the Bagger–Lambert lagrangian into

separate terms living on the different components of
⊕N

α=1 Wα ⊕
⊕M

π=1Eπ ⊕E0. Indeed let us

define accordingly L W = −1
2

∑N
α=1DµX

aα

I DµXaα

I +V W (X)+L W
CS and likewise for E and E0.

This is mainly for notational convenience however and one must be wary of the fact that L E

and L E0 could have some fields, namely components of Aij, in common.
To relate the full lagrangian L with a super Yang-Mills theory, one has first to identify and

integrate out those fields which are auxiliary or appear linearly as Lagrange multipliers. This
will be most easily done by considering L W , L E and L E0 in turn.

3.2.1. L W . The field Baα appears only algebraically as an auxiliary field in L W . Its equation
of motion implies

2 Y κακα

Baα = Xκα

I DXaα

I + ∗F aα , (100)

for each value of α. Substituting this back into L W then gives

− 1
2

N
∑

α=1

DµX
aα

I DµXaα

I + L
W
CS =

N
∑

α=1

{

−1
2
P κα

IJ DµX
aα

I D
µXaα

J − 1
4Y κακα F

aα

µν F
µν aα

}

, (101)

where, for each α, P κα

IJ := δIJ − Xκα

I Xκα

J

Y κακα is the projection operator onto the hyperplane R7 ⊂ R8

which is orthogonal to the 8-vector Xκα

I that κα
i projects the constant X i

I onto.
Furthermore, in terms of the Lie bracket [−,−]α on gα, the scalar potential can be written

V
W (X) = −1

4

N
∑

α=1

Y κακα

P κα

IKP
κα

JL [XI , XJ ]aα

α [XK , XL]aα

α . (102)

In conclusion, we have shown that upon integrating out Baα one can identify

L
W =

N
∑

α=1

L
SY M

(

A
aα , P κα

IJ X
aα

J , ‖Xκα‖|gα

)

. (103)
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The identification above with the lagrangian in (88) has revealed a rather intricate relation
between the data κα

i and gα on Wα from Theorem 9 and the physical parameters in the super
Yang–Mills theory. In particular, the coupling constant for the super Yang–Mills theory on Wα

corresponds to the SO(8)-norm of Xκα

I . Moreover, the direction of Xκα

I in R8 determines which
hyperplane the seven scalar fields in the super Yang–Mills theory must occupy and thus may
be different on each Wα. The gauge symmetry is based on the euclidean Lie algebra

⊕N
α=1 gα.

The main point to emphasise is that it is the projections of the individual κα
i onto the

vacuum described by constant X i
I (rather than the vacuum expectation values themselves)

which determine the physical moduli in the theory. For example, take N = 1 with only one
simple Lie algebra structure g = su(n) on W . The lagrangian (103) then describes precisely the
low-energy effective theory for n coincident D2-branes in type IIA string theory, irrespective
of the index r of the initial 3-Lie algebra. The only difference is that the coupling ‖Xκ‖, to
be interpreted as the perimeter of the M-theory circle, is realised as a different projection for
different values of r.

Thus, in general, we are assuming a suitably generic situation wherein none of the projections
Xκα

I vanish identically. If Xκα

I = 0 for a given value of α then the Wα part of the scalar potential
(98) vanishes identically and the only occurrence of the corresponding Baα is in the Chern–
Simons term (99). Thus, for this particular value of α, Baα has become a Lagrange multiplier
imposing F aα = 0 and so A aα is pure gauge. The resulting lagrangian on this Wα therefore
describes a free N = 8 supersymmetric theory for the eight scalar fields Xaα

I .

3.2.2. L E. The field ǫaπbπAaπbπ appears only linearly in one term in L E
CS and is therefore a

Lagrange multiplier imposing the constraint Aηπζπ

= dφηπζπ

, for some some scalar fields φηπζπ

,
for each value of π. The number of distinct scalars φηπζπ

will depend on the number of linearly
independent 2-planes in Rr which the collection of all ηπ ∧ ζπ span for π = 1, ...,M . Let us
henceforth call this number k, which is clearly bounded above by

(

r
2

)

.
Moreover, up to total derivatives, one has a choice of taking just one of the two gauge fields

Aηπaπ and Aζπaπ to be auxiliary in L E . These are linearly independent gauge fields by virtue
of the fact that ηπ ∧ ζπ span a 2-plane in Rr for each value of π. Without loss of generality we
can take Aηπaπ to be auxiliary and integrate it out in favour of Aζπaπ . After implementing the
Lagrange multiplier constraint above, one finds that the equation of motion of Aηπaπ implies

2 Y ζπζπ

Aηπaπ = −ǫaπbπ

{

Xζπ

I

(

dXbπ

I + 2 ǫbπcπ

(

Xcπ

I dφ
ηπζπ

+Xηπ

I Aζπcπ

))

+ 2 ∗
(

dAζπbπ + 2 ǫbπcπdφηπζπ ∧Aζπcπ
)}

. (104)

Substituting this back into L E then, following a rather lengthy but straightforward calculation,
one finds that

−1
2

M
∑

π=1

DµX
aπ

I DµXaπ

I + L
E
CS = − 1

2

M
∑

π=1

P ζπ

IJ

(

∂µX
aπ

I + 2 ǫaπbπ

(

Xbπ

I ∂µφ
ηπζπ

+Xηπ

I Aζπbπ

µ

))

×
(

∂µXaπ

J + 2 ǫaπcπ

(

Xcπ

J ∂
µφηπζπ

+Xηπ

J Aµ ζπcπ

))

−
M

∑

π=1

4
Y ζπζπ

(

∂[µA
ζπaπ

ν] + 2 ǫaπbπ∂[µφ
ηπζπ

Aζπbπ

ν]

)

×
(

∂µAν ζπaπ + 2 ǫaπcπ∂µφηπζπ

Aν ζπcπ
)

,
(105)
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where, for each π, P ζπ

IJ := δIJ − Xζπ

I
Xζπ

J

Y ζπζπ projects onto the hyperplane R
7 ⊂ R

8 orthogonal to

the 8-vector Xζπ

I which ζπ
i projects the constant X i

I onto.
We have deliberately written (105) in a way that is suggestive of a super Yang–Mills de-

scription for the fields on E however, in contrast with the preceding analysis for W , the gauge
structure here is not quite so manifest. To make it more transparent, let us fix a particular
value of π and consider a 4-dimensional lorentzian vector space of the form Re+ ⊕ Re− ⊕ Eπ,
where the particular basis (e+, e−) for the two null directions obeying 〈e+, e−〉 = 1 and
〈e±, e±〉 = 0 = 〈e±, eaπ

〉 can of course depend on the choice of π (we will omit the π label
here though). If we take Eπ to be a euclidean 2-dimensional abelian Lie algebra then we can
define a lorentzian metric Lie algebra structure on Re+⊕Re−⊕Eπ given by the double extension
d(Eπ,R). The nonvanishing Lie brackets of d(Eπ,R) are

[e+, eaπ
] = −ǫaπbπ

ebπ
, [eaπ

, ebπ
] = −ǫaπbπ

e− . (106)

This double extension is precisely the Nappi–Witten Lie algebra.
For each value of π we can collect the following sets of scalars X

π
I := (Xηπ

I , Xζπ

I , Xaπ

I ) and
gauge fields A

π := (2 dφηπζπ

, 0,−2Aζπaπ) into elements of the aforementioned vector space
Re+ ⊕ Re− ⊕ Eπ. The virtue of doing so being that if D = d + [A,−], for each value of
π, is the canonical gauge-covariant derivative with respect to each d(Eπ,R) then (DXI)

aπ =

dXaπ

I + 2 ǫaπbπ

(

Xbπ

I dφ
ηπζπ

+Xηπ

I Aζπbπ

)

while the associated field strength Fµν = [Dµ,Dν ] has

F
aπ = −2

(

dAζπaπ + 2 ǫaπbπdφηπζπ ∧ Aζπbπ
)

. These are exactly the components appearing in
(105)!

Moreover, the scalar potential V E(X) can be written

V
E(X) = −1

4

M
∑

π=1

Y ζπζπ

P ζπ

IKP
ζπ

JL [XI ,XJ ]aπ [XK ,XL]aπ , (107)

where [−,−] denotes the Lie bracket on each d(Eπ,R) factor.
Thus it might appear that L E is going to describe a super Yang–Mills theory whose gauge

algebra is
⊕M

π=1 d(Eπ,R), which indeed has a maximally isotropic centre and so is of the form
noted in section 3.1.2. However, this need not be the case in general since the functions
φηπζπ

appearing in the e+ direction of each A
π must describe the same degree of freedom for

different values of π precisely when the corresponding 2-planes in Rr spanned by ηπ ∧ ζπ are
linearly dependent. Consequently we must identify the (e+, e−) directions in all those factors
d(Eπ,R) for which the associated ηπ ∧ ζπ span the same 2-plane in Rr. It is not hard to see

that, with respect to a general basis on
⊕M

π=1Eπ, the resulting Lie algebra k must take the

form
⊕k

[π]=1 d(E[π],R) of an orthogonal direct sum over the number of independent 2-planes k

spanned by η[π]∧ζ [π] of a set of k double extensions d(E[π],R) of even-dimensional vector spaces

E[π], where
⊕M

π=1Eπ =
⊕k

[π]=1E[π]. That is each [π] can be thought of as encompassing an
equivalence class of π values for which the corresponding 2-forms ηπ ∧ ζπ are all proportional
to each other. The data for k therefore corresponds to a set of k nondegenerate elements
J[π] ∈ so(E[π]) where, for a given value of [π], the relative eigenvalues of J[π] are precisely the
relative proportionality constants for the linearly dependent 2-forms ηπ ∧ ζπ in the equivalence
class. Clearly k therefore has index k, dimension 2

(

k +
[

dim W0

2

])

and admits a maximally
isotropic centre.
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Putting all this together, we conclude that

L
E =

k
∑

[π]=1

L
SY M

(

A
[π], P ζ[π]

IJ X
[π]
J , ‖Xζ[π]‖

∣

∣

∣
d(E[π],R)

)

. (108)

One can check from (98) and (105) that the contributions to the Bagger–Lambert lagrangian
on E coming from different Eπ factors, but with π values in the same equivalence class [π],
are precisely accounted for in the expression (108) by the definition above of the elements J[π]

defining the double extensions.
The identification above again provides quite an intricate relation between the data on Eπ

from Theorem 9 and the physical super Yang–Mills parameters. However, we know from
section 3.1.2 that the physical content of super Yang–Mills theories whose gauge symmetry is
based on a lorentzian Lie algebra corresponding to a double extension is rather more simple,
being described in terms of free massive vector supermultiplets. Let us therefore apply this
preceding analysis to the theory above.

The description above of the lagrangian on each factor Eπ has involved projecting degrees
of freedom onto the hyperplane R7 ⊂ R8 orthogonal to Xζπ

I . The natural analogy here of
the six-dimensional subspace occupied by the massive scalar fields in section 3.1.2 is obtained
by projecting onto the subspace R6 ⊂ R8 which is orthogonal to the plane in R8 spanned by
Xηπ ∧Xζπ

, i.e. the image in Λ2R8 of the 2-form ηπ ∧ ζπ under the map from Rr → R8 provided
by the vacuum expectation values X i

I . This projection operator can be written

P ηπζπ

IJ = δIJ −Xηπ

I Qηπ

J −Xζπ

I Qζπ

J , (109)

where

Qηπ

I :=
1

(∆ηπζπ)2

(

Y ζπζπ

Xηπ

I − Y ηπζπ

Xζπ

I

)

Qζπ

I :=
1

(∆ηπζπ)2

(

Y ηπηπ

Xζπ

I − Y ηπζπ

Xηπ

I

)

,

(110)

and
(∆ηπζπ)2 := ‖Xηπ ∧Xζπ‖2 ≡ Y ηπηπ

Y ζπζπ − (Y ηπζπ

)2 . (111)

The quantities defined in (110) are the dual elements to Xηπ

I and Xζπ

I such that Qηπ

I Xηπ

I = 1 =

Qζπ

I X
ζπ

I and Qηπ

I X
ζπ

I = 0 = Qζπ

I X
ηπ

I . The expression (111) identifies ∆ηπζπ with the area in

R8 spanned by Xηπ ∧Xζπ

. From these definitions, it follows that P ηπζπ

IJ in (109) indeed obeys

P ηπζπ

IJ = P ηπζπ

JI , P ηπζπ

IK P ηπζπ

JK = P ηπζπ

IJ and P ηπζπ

IJ Xηπ

J = 0 = P ηπζπ

IJ Xζπ

J .
The scalar potential (107) on E has a natural expression in terms of the objects defined in

(109) and (111) as

V
E(X) = −1

2

M
∑

π=1

(∆ηπζπ)2 P ηπζπ

IJ Xaπ

I Xaπ

J . (112)

Furthermore, using the identity

P ηπζπ

IJ ≡ P ζπ

IJ − (∆ηπζπ)2

Y ζπζπ Qηπ

I Q
ηπ

J , (113)

allows one to reexpress the remaining terms

− 1
2

M
∑

π=1

DµX
aπ

I DµXaπ

I + L
E
CS (114)

in (105) as
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M
∑

π=1

−1
2
P ηπζπ

IJ DµX
aπ

I D
µXaπ

J − 1
Y ζπζπ

(

2 D[µA
ζπaπ

ν]

)

(

2 D
µAν ζπaπ

)

− 1
2

M
∑

π=1

Y ζπζπ

(∆ηπζπ)2

(

Xηπ

I P ζπ

IJ DµX
aπ

J + 2
(∆ηπζπ)2

Y ζπζπ ǫaπbπAζπbπ

µ

)

×
(

Xηπ

K P ζπ

KLD
µXaπ

L + 2
(∆ηπζπ)2

Y ζπζπ ǫaπcπAµ ζπcπ

)

, (115)

where we have introduced the covariant derivative DΦaπ := dΦaπ + 2 ǫaπbπ dφηπζπ ∧Φbπ for any
differential form Φaπ on R

1,2 taking values in Eπ. Similar to what we saw in section 3.1.2,
the six projected scalars P ηπζπ

IJ Xaπ

J in the first line of (115) do not couple to the gauge field
Aζπaπ on each Eπ. Moreover, the remaining scalar in the second line of (115) can be eliminated
from the lagrangian, for each Eπ, using the gauge symmetry under which δAiaπ = DΛiaπ

for any parameter Λiaπ to fix Λζπaπ = −1
2

Y ζπζπ

(∆ηπζπ )2
ǫaπbπXηπ

I P ζπ

IJ X
bπ

J . There is a remaining gauge

symmetry under which δφηπζπ

= Ληπζπ

and δΦaπ = −2 Ληπζπ

ǫaπbπΦbπ where the gauge parameter
Ληπζπ

= ηπ
i ζ

π
j Λij , under which the derivative D transforms covariantly. This can also be fixed

to set D = d on each Eπ. Notice that one has precisely the right number of these gauge
symmetries to fix all the independent projections φηπζπ

appearing in the covariant derivatives.
After doing this one combines (112) and (115) to write

L
E =

M
∑

π=1

−1
2
P ηπζπ

IJ ∂µX
aπ

I ∂µXaπ

J − 1
2
(∆ηπζπ)2P ηπζπ

IJ Xaπ

I Xaπ

J

+
M

∑

π=1

− 1
Y ζπζπ (2 ∂[µA

ζπaπ

ν] )(2 ∂[µAν] ζπaπ) − 2
Y ζπζπ (∆ηπζπ)2Aζπaπ

µ Aµ ζπaπ ,

(116)

describing precisely the bosonic part of the lagrangian for free decoupled abelian N = 8 massive
vector supermultiplets on each Eπ, whose bosonic fields comprise the six scalars P ηπζπ

IJ Xaπ

J and
gauge field −2 1

‖Xζπ ‖
Aζπaπ , all with mass ∆ηπζπ on each Eπ. It is worth stressing that we have

presented (116) as a sum over all Eπ just so that the masses ∆ηπζπ on each factor can be
written more explicitly. We could equally well have presented things in terms of a sum over
the equivalence classes E[π], as in (108), whereby the relative proportionality constants for the
∆ηπζπ within a given class [π] would be absorbed into the definition of the corresponding J[π].

The lagrangian on a given Eπ in the sum (116) can also be obtained from the truncation of
an N = 8 super Yang–Mills theory with euclidean gauge algebra g via the procedure described
at the end of section 3.1.2. In particular, let us identify a given Eπ with the Cartan subalgebra
of a semisimple Lie algebra g of rank two. Then we require −‖Xζπ‖2 (ady)

2 = (∆ηπζπ)2 12 on
Eπ for some constant y ∈ E⊥

π ⊂ g. In this case g must be either su(3), so(5), so(4) or g2

and E⊥
π is identified with the root space of g whose dimension is 6, 8, 4 or 12 respectively. A

solution in this case is to take y proportional to the vector with only +1/-1 entries along the

positive/negative roots of g. The proportionality constant here being
∆ηπζπ√

h(g)‖Xζπ ‖
where h(g) is

the dual Coxeter number of g and equals 3, 3, 2 or 4 for su(3), so(5), so(4) or g2 respectively
(it is assumed that the longest root has norm-squared equal to 2 with respect to the Killing
form in each case).

Recall from [23] that several of these rank two Lie algebras are thought to correspond to
the gauge algebras for N = 8 super Yang–Mills theories whose IR superconformal fixed points
are described by the Bagger–Lambert theory based on S4 for two M2-branes on R8/Z2 (with
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Lie algebras so(4), so(5) and g2 corresponding to Chern–Simons levels k = 1, 2, 3). It would
interesting to understand whether there is any relation with the aforementioned truncation be-
yond just numerology! The general mass formulae we have obtained are somewhat reminiscent
of equation (26) in [23] for the BLG model based on S4 which describes the mass in terms of
the area of the triangle formed between the location of the two M2-branes and the orbifold
fixed point on R8/Z2. More generally, it would be interesting to understand whether there is a
specific D-brane configuration for which L E is the low-energy effective lagrangian?

3.2.3. L E0. The field Aia0 appears only linearly in one term in L 0
CS and is therefore a Lagrange

multiplier imposing the constraint Kijka0A
jk = dγia0, where γia0 is a scalar field on R1,2 taking

values in R
r ⊗E0.

Substituting this condition into the lagrangian allows us to write

−1
2
DµX

a0
I D

µXa0
I + L

E0
CS = − 1

2
∂µ

(

Xa0
I − γi

a0X i
I

)

∂µ
(

Xa0
I − γj

a0Xj
I

)

− 1
3
Aij ∧ dγia0 ∧ dγja0 + 1

2
LijklA

ij ∧ dAkl .
(117)

The first line shows that we can simply redefine the scalars Xa0
I such that they decouple and

do not interact with any other fields in the theory.
Notice that none of the projections Aηπζπ

= dφηπζπ

of Aij that appeared in L E can appear in
the second line of (117) since the corresponding terms would be total derivatives. Consequently,
our indifference to L E0 in the gauge-fixing that was described for L E , resulting in (116), was
indeed legitimate. Furthermore, there can be no components of Aij along the 2-planes in Rr

spanned by the nonanishing components of Kijka0 here for the same reason.
The contribution coming from the Chern–Simons term in the second line of (117) is therefore

completely decoupled from all the other terms in the lagrangian. It has a rather unusual-looking
residual gauge symmetry, inherited from that in the original Bagger–Lambert theory, under
which δγia0 = σia0 := Kia0klΛ

kl and Lijkl

(

δAkl − dΛkl
)

= σ[i
a0dγj]a0

for any gauge parameter
Λij . In addition to the second line of (117) being invariant under this gauge transformation,
one can easily check that so is the tensor LijkldA

kl−dγia0∧dγja0. This is perhaps not surprising
since the vanishing of this tensor is precisely the field equation resulting from varying Aij in the
second line of (117). The important point though is that this gauge-invariant tensor is exact and
thus the field equations resulting from the second line of (117) are precisely equivalent to those
obtained from an abelian Chern–Simons term for the gauge field Cij := LijklA

kl − γ[i
a0 ∧ dγj]a0

(where the [ij] indices do not run over any 2-planes in Rr which are spanned by the nonvanishing
components of ηπ

[iζ
π
j] and Kijka0).

In summary, up to the aforementioned field redefinitions, we have found that

L
E0 = −1

2
∂µX

a0
I ∂

µXa0
I + 1

2
M ijklCij ∧ dCkl , (118)

for some constant tensor M ijkl, which can be taken to obey M ijkl = M [ij][kl] = Mklij , that is
generically a complicated function of the components Lijkl and Kijka0. Clearly this redefined
abelian Chern–Simons term is only well-defined in a path integral provided the components
M ijkl are quantised in suitable integer units. However, since none of the dynamical fields are
charged under Cij then we conclude that the contribution from L E0 is essentially trivial.

3.3. Examples. Let us end by briefly describing an application of this formalism to describe
the unitary gauge theory resulting from the Bagger–Lambert theory associated with two of the
admissible index-2 3-Lie algebras in the IIIb family from [13] that were detailed in section 2.3.
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3.3.1. VIIIb(0, 0, 0, h, g, ψ). The data needed for this in Theorem 9 is κ|h = (0, 1)t, κ|gα
=

(ψα, 1)t. The resulting Bagger–Lambert lagrangian will only get a contribution from L W and
describes a sum of separate N = 8 super Yang–Mills lagrangians on h and on each factor gα,
with the respective euclidean Lie algebra structures describing the gauge symmetry. The super
Yang–Mills theory on h has coupling ‖Xu2‖ and the seven scalar fields occupy the hyperplane
orthogonal to Xu2 in R8. Similarly, the N = 8 theory on a given gα has coupling ‖ψαX

u1 +Xu2‖
with scalars in the hyperplane orthogonal to ψαX

u1 + Xu2 . This is again generically a super
Yang–Mills theory though it degenerates to a maximally supersymmetric free theory for all
eight scalars if there are any values of α for which ψαX

u1 +Xu2 = 0.

3.3.2. VIIIb(E, J, 0, h, 0, 0). The data needed for this in Theorem 9 is κ|h = (0, 1)t and Jπ =

ηπ ∧ ζπ where ηπ and ζπ are 2-vectors spanning R2 for each value of π and E =
⊕M

π=1Eπ. The
data comprising Jπ can also be understood as a special case of a general admissible index r 3-
Lie algebra having all ηπ ∧ ζπ spanning the same 2-plane in R

r (when r = 2 this is unavoidable,
of course). The resulting Bagger–Lambert lagrangian will get one contribution from L W ,
describing precisely the same N = 8 super Yang–Mills theory on h we saw above, and one
contribution from L E . The latter being the simplest case of the lagrangian (108) where there
is just one equivalence class of 2-planes spanned by all ηπ∧ζπ and the gauge symmetry is based
on the lorentzian Lie algebra d(E,R). The physical degrees of freedom describe free abelian
N = 8 massive vector supermultiplets on each Eπ with masses ∆ηπζπ as in (116). Mutatis
mutandis, this example is equivalent to the Bagger–Lambert theory resulting from the most
general finite-dimensional 3-Lie algebra example considered in section 4.3 of [18].
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