98 research outputs found

    Factors contributing to the time taken to consult with symptoms of lung cancer: a cross-sectional study

    Get PDF
    <b>Objectives</b>: To determine what factors are associated with the time people take to consult with symptoms of lung cancer, with a focus on those from rural and socially deprived areas. <b>Methods</b>: A cross-sectional quantitative interview survey was performed of 360 patients with newly diagnosed primary lung cancer in three Scottish hospitals (two in Glasgow, one in NE Scotland). Supplementary data were obtained from medical case notes. The main outcome measures were the number of days from (1) the date participant defined first symptom until date of presentation to a medical practitioner; and (2) the date of earliest symptom from a symptom checklist (derived from clinical guidelines) until date of presentation to a medical practitioner. <b>Results</b>: 179 participants (50%) had symptoms for more than 14 weeks before presenting to a medical practitioner (median 99 days; interquartile range 31–381). 270 participants (75%) had unrecognised symptoms of lung cancer. There were no significant differences in time taken to consult with symptoms of lung cancer between rural and/or deprived participants compared with urban and/or affluent participants. Factors independently associated with increased time before consulting about symptoms were living alone, a history of chronic obstructive pulmonary disease (COPD) and longer pack years of smoking. Haemoptysis, new onset of shortness of breath, cough and loss of appetite were significantly associated with earlier consulting, as were a history of chest infection and renal failure. <b>Conclusion</b>: For many people with lung cancer, regardless of location and socioeconomic status, the time between symptom onset and consultation was long enough to plausibly affect prognosis. Long-term smokers, those with COPD and/or those living alone are at particular risk of taking longer to consult with symptoms of lung cancer and practitioners should be alert to this

    Electron energy loss and induced photon emission in photonic crystals

    Full text link
    The interaction of a fast electron with a photonic crystal is investigated by solving the Maxwell equations exactly for the external field provided by the electron in the presence of the crystal. The energy loss is obtained from the retarding force exerted on the electron by the induced electric field. The features of the energy loss spectra are shown to be related to the photonic band structure of the crystal. Two different regimes are discussed: for small lattice constants aa relative to the wavelength of the associated electron excitations λ\lambda, an effective medium theory can be used to describe the material; however, for aλa\sim\lambda the photonic band structure plays an important role. Special attention is paid to the frequency gap regions in the latter case.Comment: 12 pages, 7 figure

    First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland

    Get PDF
    Reports of ChAdOx1 vaccine–associated thrombocytopenia and vascular adverse events have led to some countries restricting its use. Using a national prospective cohort, we estimated associations between exposure to first-dose ChAdOx1 or BNT162b2 vaccination and hematological and vascular adverse events using a nested incident-matched case-control study and a confirmatory self-controlled case series (SCCS) analysis. An association was found between ChAdOx1 vaccination and idiopathic thrombocytopenic purpura (ITP) (0–27 d after vaccination; adjusted rate ratio (aRR) = 5.77, 95% confidence interval (CI), 2.41–13.83), with an estimated incidence of 1.13 (0.62–1.63) cases per 100,000 doses. An SCCS analysis confirmed that this was unlikely due to bias (RR = 1.98 (1.29–3.02)). There was also an increased risk for arterial thromboembolic events (aRR = 1.22, 1.12–1.34) 0–27 d after vaccination, with an SCCS RR of 0.97 (0.93–1.02). For hemorrhagic events 0–27 d after vaccination, the aRR was 1.48 (1.12–1.96), with an SCCS RR of 0.95 (0.82–1.11). A first dose of ChAdOx1 was found to be associated with small increased risks of ITP, with suggestive evidence of an increased risk of arterial thromboembolic and hemorrhagic events. The attenuation of effect found in the SCCS analysis means that there is the potential for overestimation of the reported results, which might indicate the presence of some residual confounding or confounding by indication. Public health authorities should inform their jurisdictions of these relatively small increased risks associated with ChAdOx1. No positive associations were seen between BNT162b2 and thrombocytopenic, thromboembolic and hemorrhagic events

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
    corecore