212 research outputs found

    The impact and rotational lightcurves of Comet 9P/Tempel 1

    Get PDF
    UVES and HIRES high-resolution spectra of comet 9P/Tempel 1 are used to investigate the impact and rotational light curves of various species with a view toward building a simple model of the distribution and activity of the sources. The emission by OH, NH, CN, C3, CH, C2, NH2 and OI, are analyzed, as well as the light scattered by the dust. It is found that a simple model reproduces fairly well the impact lightcurves of all species combining the production of the observed molecules and the expansion of the material throughout the slit. The rotational light curve for each species is explained in terms of a single model with three sources.Comment: 34 pages, 11 figures Accepted for publication in the special issue of Icarus associated with the Deep Impact mission to Comet 9P/Tempel

    The meningococcal vaccine antigen GNA2091 is an analogue of YraP and plays key roles in outer membrane stability and virulence

    Get PDF
    K.L.S. was supported by the Australian National Health and Medical Research Council (NHMRC) C. J. Martin Fellowship and Career Development Fellowship. A.F.H. was supported by a Marie Curie Fellowship (PIEF-GA-2012-328377). F.O., L.F., and S.B. were recipients of Novartis fellowships from the Ph.D. program of the University of Siena (Siena, Italy) and University of Bologna (Bologna, Italy), respectively.GNA2091 is one of the components of the 4-component meningococcal serogroup B vaccine (4CMenB) vaccine and is highly conserved in all meningococcal strains. However, its functional role has not been fully characterized. Here we show that nmb2091 is part of an operon and is cotranscribed with the nmb2089, nmb2090, and nmb2092 adjacent genes, and a similar but reduced operon arrangement is conserved in many other gram-negative bacteria. Deletion of the nmb2091 gene causes an aggregative phenotype with a mild defect in cell separation; differences in the outer membrane composition and phospholipid profile, in particular in the phosphoethanolamine levels; an increased level of outer membrane vesicles; and deregulation of the zinc-responsive genes such as znuD. Finally, the Δ2091 strain is attenuated with respect to the wild-type strain in competitive index experiments in the infant rat model of meningococcal infection. Altogether these data suggest that GNA2091 plays important roles in outer membrane architecture, biogenesis, homeostasis, and in meningococcal survival in vivo, and amodel for its role is discussed. These findings highlight the importance of GNA2091 as a vaccine component.PostprintPeer reviewe

    Phase I/II trial evaluating carbon ion radiotherapy for the treatment of recurrent rectal cancer: the PANDORA-01 trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment standard for patients with rectal cancer depends on the initial staging and includes surgical resection, radiotherapy as well as chemotherapy. For stage II and III tumors, radiochemotherapy should be performed in addition to surgery, preferentially as preoperative radiochemotherapy or as short-course hypofractionated radiation. Advances in surgical approaches, especially the establishment of the total mesorectal excision (TME) in combination with sophisticated radiation and chemotherapy have reduced local recurrence rates to only few percent. However, due to the high incidence of rectal cancer, still a high absolute number of patients present with recurrent rectal carcinomas, and effective treatment is therefore needed.</p> <p>Carbon ions offer physical and biological advantages. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increase relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the cell line as well as the endpoint analyzed.</p> <p>Japanese data on the treatment of patients with recurrent rectal cancer previously not treated with radiation therapy have shown local control rates of carbon ion treatment superior to those of surgery. Therefore, this treatment concept should also be evaluated for recurrences after radiotherapy, when dose application using conventional photons is limited. Moreover, these patients are likely to benefit from the enhanced biological efficacy of carbon ions.</p> <p>Methods and design</p> <p>In the current Phase I/II-PANDORA-01-Study the recommended dose of carbon ion radiotherapy for recurrent rectal cancer will be determined in the Phase I part, and feasibilty and progression-free survival will be assessed in the Phase II part of the study.</p> <p>Within the Phase I part, increasing doses from 12 × 3 Gy E to 18 × 3 Gy E will be applied.</p> <p>The primary endpoint in the Phase I part is toxicity, the primary endpoint in the Phase II part is progression-free survival.</p> <p>Discussion</p> <p>With conventional photon irradiation treatment of recurrent rectal cancer is limited, and the clinical effect is only moderate. With carbon ions, an improved outcome can be expected due to the physical and biological characteristics of the carbon ion beam. However, the optimal dose applicable in this clincial situation as re-irradiation still has to be determined. This, as well as efficacy, is to be evaluated in the present Phase I/II trial.</p> <p>Trial registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01528683">NCT01528683</a></p

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Rapid sample delivery for megahertz serial crystallography at X-ray FELs

    Get PDF
    Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse. This work reports the results of a megahertz serial diffraction experiment at the FLASH FEL facility using 4.3 nm radiation. The operation of gas-dynamic nozzles that produce liquid microjets with velocities greater than 80 m s-1 was demonstrated. Furthermore, this article provides optical images of X-ray-induced explosions together with Bragg diffraction from protein microcrystals exposed to trains of X-ray pulses repeating at rates of up to 4.5 MHz. The results indicate the feasibility for megahertz serial crystallography measurements with hard X-rays and give guidance for the design of such experiments
    corecore