46 research outputs found

    Antioxidant and Anti-Inflammatory Activities of Extracts from Cassia alata, Eleusine indica, Eremomastax speciosa, Carica papaya and Polyscias fulva Medicinal Plants Collected in Cameroon

    Get PDF
    Abstract Background: The vast majority of the population around the world has always used medicinal plants as first source of health care to fight infectious and non infectious diseases. Most of these medicinal plants may have scientific evidence to be considered in general practice. Objective: The aim of this work was to investigate the antioxidant capacities and anti-inflammatory activities of ethanol extracts of leaves of Cassia alata, Eleusine indica, Carica papaya, Eremomastax speciosa and the stem bark of Polyscias fulva, collected in Cameroon. Methods: Chemiluminescence was used to analyze the antioxidant activities of plant extracts against hydrogen peroxide or superoxide anion. Comet assays were used to analyze the protection against antioxidant-induced DNA damage induced in white blood cells after treating with hydrogen peroxide. Flow cytometry was used to measure cd T cells proliferation and anti-inflammatory activity of cd T cells and of immature dendritic cells (imDC) in the presence of different concentrations of plant extracts. Results: Ethanol extracts showed strong antioxidant properties against both hydrogen peroxide and superoxide anion. Cassia alata showed the highest antioxidant activity. The effect of plant extracts on cd T cells and imDC was evidenced by the dose dependent reduction in TNF-a production in the presence of Cassia alata, Carica papaya, Eremomastax speciosa Eleusine indica, and Polyscias fulva. cd T cells proliferation was affected to the greatest extent by Polyscias fulva. Conclusion: These results clearly show the antioxidant capacity and anti-inflammatory activities of plant extracts collected in Cameroon. These properties of leaves and stem bark extracts may contribute to the value for these plants in traditional medicine and in general medical practice

    Oxidative Stress-mediated Mesangial Cell Proliferation Requires RAC-1/Reactive Oxygen Species Production and β4 Integrin Expression

    Get PDF
    Abstract Lipid abnormalities and oxidative stress, by stimulating mesangial cell (MC) proliferation, can contribute to the development of diabetes-associated renal disease. In this study we investigated the molecular events elicited by oxidized low density lipoproteins (ox-LDL) in MC. We demonstrate that in MC cultured in the presence of ox-LDL, survival and mitogenic signals on Akt and Erk1/2 MAPK pathways are induced, respectively. Moreover, as shown by the expression of the dominant negative Rac-1 construct, we first report that ox-LDL-mediated cell survival and cell cycle progression depend on Rac-1 GTPase-mediated reactive oxygen species production and on epidermal growth factor receptor transactivation. By silencing Akt and blocking Erk1/2 MAPK pathways, we also demonstrate that these signals are downstream to Rac-1/reactive oxygen species production and epidermal growth factor receptor activation. Finally, by endogenous depletion of β4 integrin, expressed in MC, we provide evidence that the expression of this adhesion molecule is essential for ox-LDL-mediated MC dysfunction. Our data identify a novel signaling pathway involved in oxidative stress-induced diabetes-associated renal disease and provide the rationale for therapeutically targeting β4 integrin

    p53 inhibits alpha 6 beta 4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB

    Get PDF
    Although the interaction of matrix proteins with integrins is known to initiate signaling pathways that are essential for cell survival, a role for tumor suppressors in the regulation of these pathways has not been established. We demonstrate here that p53 can inhibit the survival function of integrins by inducing the caspase-dependent cleavage and inactivation of the serine/threonine kinase AKT/PKB. Specifically, we show that the alpha6beta4 integrin promotes the survival of p53-deficient carcinoma cells by activating AKT/PKB. In contrast, this integrin does not activate AKT/PKB in carcinoma cells that express wild-type p53 and it actually stimulates their apoptosis, in agreement with our previous findings (Bachelder, R.E., A. Marchetti, R. Falcioni, S. Soddu, and A.M. Mercurio. 1999. J. Biol. Chem. 274:20733-20737). Interestingly, we observed reduced levels of AKT/PKB protein after antibody clustering of alpha6beta4 in carcinoma cells that express wild-type p53. In contrast, alpha6beta4 clustering did not reduce the level of AKT/PKB in carcinoma cells that lack functional p53. The involvement of caspase 3 in AKT/PKB regulation was indicated by the ability of Z-DEVD-FMK, a caspase 3 inhibitor, to block the alpha6beta4-associated reduction in AKT/PKB levels in vivo, and by the ability of recombinant caspase 3 to promote the cleavage of AKT/PKB in vitro. In addition, the ability of alpha6beta4 to activate AKT/PKB could be restored in p53 wild-type carcinoma cells by inhibiting caspase 3 activity. These studies demonstrate that the p53 tumor suppressor can inhibit integrin-associated survival signaling pathways

    p53 Mediates the Accelerated Onset of Senescence of Endothelial Progenitor Cells in Diabetes

    Get PDF
    Adverse metabolic factors, including oxidized small and dense low density lipoprotein (ox-dmLDL) can contribute to the reduced number and the impaired functions of circulating endothelial progenitors (EPC) in diabetic patients. To elucidate the molecular mechanisms involved, EPC from normal donors were cultured in the presence of ox-dmLDL. Under these experimental conditions EPC undergo to senescent-like growth arrest. This effect is associated with Akt activation, p21 expression, p53 accumulation, and retinoblastoma protein dephosphorylation and with a reduced protective effect against oxidative damage. Moreover, depletion of endogenous p53 expression by small interfering RNA demonstrates that the integrity of this pathway is essential for senescence to occur. Activation of the Akt/p53/p21 signaling pathway and accelerated onset of senescence are also detectable in EPC from diabetic patients. Finally, diabetic EPC depleted of endogenous p53 do not undergo to senescence-growth arrest and acquire the ability to form tube-like structures in vitro. These observations identify the activation of the p53 signaling pathway as a crucial event that can contribute to the impaired neovascularization in diabetes

    Purification and Characterization of Adipose-Derived Stem Cells From Patients With Lipoaspirate Transplant

    Get PDF
    Techniques for medical tissue regeneration require an abundant source of human adult stem cells. There is increasing evidence that adipose stem cells contribute to restoration of tissue vascularization and organ function. The object of our study was to isolate and characterize adult adipose-derived stem cells from patients undergoing on lipoaspirate transplant with the aim to improve tissue regeneration. Adipose-derived stem cells were isolated and purified from the lipoaspirate of 15 patients and characterized for CD markers and the ability to differentiate toward the adipogenic lineage. We found that purified adipose stem cells express high level of CD49d, CD44, CD90, CD105, CD13, and CD71 and these markers of staminality were maintained at high level for at least 3 months and seven passages of in vitro culture. As expected, these cells resulted negative for the endothelial and hematopoietic-specific markers CD31, CD106, CD34, and CD45. Differentiation towards adipogenic lineage demonstrated that purified adipose-derived stem cells are still able to become adipocytes at least 3 months after in vitro culture. The analysis of Akt and MAPK phosphorylation confirmed a modulation of their activity during differentiation. Interestingly, we established for the first time that, among the p53 family members, a strong upregulation of p63 expression occurs in adipocytic differentiation, indicating a role for this transcription factor in adipocytic differentiation. Taken together, these data indicate that purified lipoaspirate-derived stem cells maintain their characteristic of staminality for a long period of in vitro culture, suggesting that they could be applied for cell-based therapy to improve autologous lipoaspirate transplant

    Induction of ErbB-3 Expression by α6β4 Integrin Contributes to Tamoxifen Resistance in ERβ1-Negative Breast Carcinomas

    Get PDF
    Tamoxifen is still the most widely used drug in hormone therapy for the treatment of breast cancer. Its benefits in adjuvant treatment are well documented in controlled and randomized clinical studies, which have demonstrated an increase in disease-free intervals of patients with positive hormonal receptors. However, the mechanisms involved in endocrine resistance are not clear. Laboratory and clinical data now indicate that bi-directional molecular cross-talk between nuclear or membrane ER and growth factor receptor pathways may be involved in endocrine resistance. We recently found a functional interaction between alpha6beta4 integrin and ErbB-3 receptor to maintain the PI3K/Akt survival pathway of mammary tumour cells. We sought to improve understanding of this process in order to provide the involvement of both receptors insight into mechanism of Tamoxifen resistance.Using human breast cancer cell lines displaying different levels of alpha6beta4 and ErbB-3 receptors and a series of 232 breast cancer biopsies from patients submitted to adjuvant Tamoxifen monotherapy for five years, we evaluated the functional interaction between both receptors in relationship to Tamoxifen responsiveness. In mammary carcinoma cells, we evidenced that the alpha6beta4 integrin strongly influence Akt phosphorylation through ErbB-3 protein regulation. Moreover, the ErbB-3 inactivation inhibits Akt phosphorylation, induces apoptosis and inhibits in vitro invasion favouring Tamoxifen responsiveness. The analysis of human tumors revealed a significant relationship between alpha6beta4 and ErbB-3 in P-Akt-positive and ERbeta1-negative breast cancers derived from patients with lower disease free survival.We provided evidence that a strong relationship occurs between alpha6beta4 and ErbB-3 positivity in ERbeta1-negative breast cancers. We also found that the association between ErbB-3 and P-Akt positivity mainly occurs in ERbeta1-negative breast cancer derived from patients with lower DFS indicating that both receptors are clinically relevant in predicting the response to Tamoxifen

    SEMA6A/RhoA/YAP axis mediates tumor-stroma interactions and prevents response to dual BRAF/MEK inhibition in BRAF-mutant melanoma

    Get PDF
    Background: Despite the promise of dual BRAF/MEK inhibition as a therapy for BRAF-mutant (BRAF-mut) melanoma, heterogeneous responses have been observed in patients, thus predictors of benefit from therapy are needed. We have previously identified semaphorin 6A (SEMA6A) as a BRAF-mut-associated protein involved in actin cytoskeleton remodeling. The purpose of the present study is to dissect the role of SEMA6A in the biology of BRAF-mut melanoma, and to explore its predictive potential towards dual BRAF/MEK inhibition. Methods: SEMA6A expression was assessed by immunohistochemistry in melanoma cohort RECI1 (N = 112) and its prognostic potential was investigated in BRAF-mut melanoma patients from DFCI and TCGA datasets (N = 258). The molecular mechanisms regulated by SEMA6A to sustain tumor aggressiveness and targeted therapy resistance were investigated in vitro by using BRAF-mut and BRAF-wt melanoma cell lines, an inducible SEMA6A silencing cell model and a microenvironment-mimicking fibroblasts-coculturing model. Finally, SEMA6A prediction of benefit from dual BRAF/MEK inhibition was investigated in melanoma cohort RECI2 (N = 14). Results: Our results indicate higher protein expression of SEMA6A in BRAF-mut compared with BRAF-wt melanoma patients and show that SEMA6A is a prognostic indicator in BRAF-mut melanoma from TCGA and DFCI patients cohorts. In BRAF-mut melanoma cells, SEMA6A coordinates actin cytoskeleton remodeling by the RhoA-dependent activation of YAP and dual BRAF/MEK inhibition by dabrafenib+trametinib induces SEMA6A/RhoA/YAP axis. In microenvironment-mimicking co-culture condition, fibroblasts confer to melanoma cells a proliferative stimulus and protect them from targeted therapies, whereas SEMA6A depletion rescues the efficacy of dual BRAF/MEK inhibition. Finally, in BRAF-mut melanoma patients treated with dabrafenib+trametinib, high SEMA6A predicts shorter recurrence-free interval. Conclusions: Overall, our results indicate that SEMA6A contributes to microenvironment-coordinated evasion of melanoma cells from dual BRAF/MEK inhibition and it might be a good candidate predictor of short-term benefit from dual BRAF/MEK inhibition

    PENGARUH HARGA DAN KUALITAS PELAYANAN TERHADAP KEPUASAN PELANGGAN SERTA DAMPAKNYA PADA LOYALITAS PELANGGAN GOJEK (Studi Pada Mahasiswa Kampus A Universitas Negeri Jakarta)

    Get PDF
    The purpose of this research are: 1) Knowing the influence of price to customer loyalty of bread product of Gojek brand in Kampus A UNJ. 2) To know the influence of service quality on customer loyalty of bread product of Gojek brand in Kampus A UNJ. The analysis done in this research is descriptive and explanatory analysis. The research was conducted with 200 customers of Gojek bread brand, while data collection technique was done by distributing questionnaires, which then processed using SPSS 21. The result of analysis showed that: 1) Price has a positive influence on consumer brand loyalty. bread products of Gojek brand. 2) Service quality has a positive influence on brand Loyalty of Gojek brand bakery products. All three variables have a positive relationship indicating the improvement of one other variable to be better too
    corecore