46 research outputs found
Recommended from our members
Predicting Survival from Telomere Length versus Conventional Predictors: A Multinational Population-Based Cohort Study
Telomere length has generated substantial interest as a potential predictor of aging- related diseases and mortality. Some studies have reported significant associations, but few have tested its ability to discriminate between decedents and survivors compared with a broad range of well-established predictors that include both biomarkers and commonly collected self-reported data. Our aim here was to quantify the prognostic value of leuko- cyte telomere length relative to age, sex, and 19 other variables for predicting five-year mortality among older persons in three countries. We used data from nationally represen- tative surveys in Costa Rica (N = 923, aged 61+), Taiwan (N = 976, aged 54+), and the U. S. (N = 2672, aged 60+). Our study used a prospective cohort design with all-cause mor- tality during five years post-exam as the outcome. We fit Cox hazards models separately by country, and assessed the discriminatory ability of each predictor. Age was, by far, the single best predictor of all-cause mortality, whereas leukocyte telomere length was only somewhat better than random chance in terms of discriminating between decedents and survivors. After adjustment for age and sex, telomere length ranked between 15th and 17th (out of 20), and its incremental contribution was small; nine self-reported variables (e.g., mobility, global self-assessed health status, limitations with activities of daily living, smoking status), a cognitive assessment, and three biological markers (C-reactive protein, serum creatinine, and glycosylated hemoglobin) were more powerful predictors of mortality in all three countries. Results were similar for cause-specific models (i.e., mortality from cardiovascular disease, cancer, and all other causes combined). Leukocyte telomere length had a statistically discernible, but weak, association with mortality, but it did not predict survival as well as age or many other self-reported variables. Although telomere length may eventually help scientists understand aging, more powerful and more easily obtained tools are available for predicting survival.National Institute on AgingEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentWellcome TrustUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Sociales::Centro Centroamericano de Población (CCP
Recommended from our members
Independent and Combined Effects of Dietary Weight Loss and Exercise on Leukocyte Telomere Length in Postmenopausal Women
Objective: Investigate the effects of 12 months of dietary weight loss and/or aerobic exercise on leukocyte telomere length in postmenopausal women. Design and Methods 439 overweight or obese women (50–75 y) were randomized to: i) dietary weight loss (N=118); ii) aerobic exercise (N=117), iii) diet + exercise (N=117), or iv) control (N=87). The diet intervention was a group-based program with a 10% weight loss goal. The exercise intervention was 45 mins/day, 5 days/week of moderate-to-vigorous aerobic activity. Fasting blood samples were taken at baseline and 12 months. DNA was extracted from isolated leukocytes and telomere length was measured by quantitative-polymerase chain reaction (qPCR). Mean changes were compared between groups (intent-to-treat) using generalized estimating equations. Results: Baseline telomere length was inversely associated with age (r=−0.12 p<0.01) and positively associated with maximal oxygen uptake (r=0.11, p=0.03), but not with BMI or %body fat. Change in telomere length was inversely correlated with baseline telomere length (r=−0.47, p<0.0001). No significant difference in leukocyte telomere length was detected in any intervention group compared to controls, nor was the magnitude of weight loss associated with telomere length at 12 months. Conclusions: Twelve-months of dietary weight loss and exercise did not change telomere length in postmenopausal women
Antiprogestins reduce epigenetic field cancerization in breast tissue of young healthy women
Background:
Breast cancer is a leading cause of death in premenopausal women. Progesterone drives expansion of luminal progenitor cells, leading to the development of poor-prognostic breast cancers. However, it is not known if antagonising progesterone can prevent breast cancers in humans. We suggest that targeting progesterone signalling could be a means of reducing features which are known to promote breast cancer formation.
Methods:
In healthy premenopausal women with and without a BRCA mutation we studied (i) estrogen and progesterone levels in saliva over an entire menstrual cycle (n = 20); (ii) cancer-free normal breast-tissue from a control population who had no family or personal history of breast cancer and equivalently from BRCA1/2 mutation carriers (n = 28); triple negative breast cancer (TNBC) biopsies and healthy breast tissue taken from sites surrounding the TNBC in the same individuals (n = 14); and biopsies of ER+ve/PR+ve stage T1–T2 cancers and healthy breast tissue taken from sites surrounding the cancer in the same individuals (n = 31); and (iii) DNA methylation and DNA mutations in normal breast tissue (before and after treatment) from clinical trials that assessed the potential preventative effects of vitamins and antiprogestins (mifepristone and ulipristal acetate; n = 44).
Results:
Daily levels of progesterone were higher throughout the menstrual cycle of BRCA1/2 mutation carriers, raising the prospect of targeting progesterone signalling as a means of cancer risk reduction in this population. Furthermore, breast field cancerization DNA methylation signatures reflective of (i) the mitotic age of normal breast epithelium and (ii) the proportion of luminal progenitor cells were increased in breast cancers, indicating that luminal progenitor cells with elevated replicative age are more prone to malignant transformation. The progesterone receptor antagonist mifepristone reduced both the mitotic age and the proportion of luminal progenitor cells in normal breast tissue of all control women and in 64% of BRCA1/2 mutation carriers. These findings were validated by an alternate progesterone receptor antagonist, ulipristal acetate, which yielded similar results. Importantly, mifepristone reduced both the TP53 mutation frequency as well as the number of TP53 mutations in mitotic-age-responders.
Conclusions:
These data support the potential usage of antiprogestins for primary prevention of poor-prognostic breast cancers
Ultra-deep mutational landscape in chronic lymphocytic leukemia uncovers dynamics of resistance to targeted therapies
BTK inhibitors, Bcl-2 inhibitors, and other targeted therapies have significantly improved the outcomes of patients with chronic lymphocytic leukemia (CLL). With increased survivorship, monitoring disease and deciphering potential mechanisms of resistance to these agents are critical for devising effective treatment strategies. We used duplex sequencing, a technology that enables detection of mutations at ultra-low allelic frequencies, to identify mutations in five genes associated with drug resistance in CLL and followed their evolution in two patients who received multiple targeted therapies and ultimately developed disease progression on pirtobrutinib. In both patients we detected variants that expanded and reached significant cancer cell fractions (CCF). In patient R001, multiple known resistance mutations in both BTK and PLCG2 appeared following progression on zanubrutinib (BTK p.L528W, p.C481S; PLCG2 S707F, L845F, R665W, and D993H). In contrast, patient R002 developed multiple BTK mutations following acalabrutinib treatment, including known resistance mutations p.C481R, p.T474I and p.C481S. We found that pirtobrutinib was able to suppress, but not completely eradicate, BTK p.C481S mutations in both patients, but other resistance mutations such as mutations in PLCG2 and new BTK mutations increased while the patients were receiving pirtobrutinib. For example, BTK p.L528W in patient R001 increased in frequency more than 1,000-fold (from a CCF of 0.02% to 35%), and the CCF in p.T474I in patient R002 increased from 0.03% to 4.2% (more than 100-fold). Our data illuminate the evolutionary dynamics of resistant clones over the patients’ disease course and under selective pressure from different targeted treatments
Papel del daño genómico en el cáncer colorrectal
La inestabilidad genómica presente en el tumor determina su evolución. Esta evolución puede ocurrir por diferentes vías de progresión tumoral que comportan unas características moleculares, cromosómicas y clínico-patológicas concretas. El estudio del daño genómico, consecuencia de la inestabilidad genómica, puede ayudar a caracterizar las vías de progresión tumoral y puede permitir la identificación de los grupos de tumores con peor pronóstico.Con el objetivo de caracterizar las distintas formas de daño genómico presentes en el cáncer colorectal y de determinar su relación con el comportamiento biológico del tumor se procedió a analizar el daño genómico de 131 tumores colorectales esporádicos mediante dos técnicas distintas: la citometría de flujo para medir aneuploidía, y la AP-PCR para cuantificar ganancias y pérdidas alélicas. A continuación se realizó la comparación de los dos tipos de daño genómico entre ellos y con las variables clínico-patológicas y moleculares de los tumores y se determinó el valor pronóstico de las medidas de daño genómico. También se analizó el papel de la aneuploidía en la diseminación metastásica.Con la intención de mejorar la cuantificación de la aneuploidía de los tumores decidimos crear un nuevo índice (Aneuploidy Index, AI) que tuviera en cuenta el grado y la extensión de la aneuploidía en el tumor. El AI tiene valor pronóstico independiente del estadío de Dukes y permite identificar un subgrupo de pacientes con tumores en estadíos tempranos, pero con alto riesgo de muerte. Por otra parte, el daño genómico medido por AP-PCR (GDF) cuantifica desequilibrios alélicos y también presenta valor pronóstico independiente. El alto GDF se asocia a mutaciones en p53, lo que indica que la inactivación de este gen podría ser una de las causas de producción de desequilibrios alélicos. Además, el GDF y el AI son independientes y por este motivo la combinación de las dos variables es el mejor predictor de supervivencia en los pacientes con resección quirúrgica radical. En cuanto al análisis de la ploidía en las metástasis, hemos observado que la mayoría presenta una población de células tumorales diploides, lo que indicaría que la diseminación ha sido llevada a cabo por este tipo de células. Además las metástasis reproducen el patrón de ploidía existente en el tumor primario.En base a los distintos tipos de daño genómico observado proponemos que éstos son la manifestación de 4 vías de progresión tumoral con factores pronósticos diferentes: vía de la inestabilidad de microsatélites, vía diploide sin inestabilidad de microsatélites (factor pronóstico: estadío de Dukes), vía aneuploide 'numérica' (factor pronóstico: AI) y vía aneuploide 'numérico-estructural' (factor pronóstico: GDF).Genomic instability determines tumor evolution. This evolution takes place following different pathways of tumor progression that associate with specific molecular, chromosomic and clinicopathologic characteristics. The study of genomic damage, consequence of genomic instability, could help to characterize the pathways of tumor progression and to identify the subgroups of patients with worse prognosis.To characterize the different forms of genomic damage present in colorectal cancer and to determine their relationship with the biological behaviour of the tumor, we analized the genomic damage of 131 sporadic colorectal tumors using two different techniques: flow cytometry to mesure aneuploidy and AP-PCR to mesure allelic gains and losses. We made the comparison of the two types of genomic damage between them and with tumor molecular and clinicopathologic variables and we determined the prognostic value of genomic damage assessment. Furthermore we analyzed the role of aneuploidy in metastasic dissemination.To quantify tumor aneuploidy in a comprehensive way, we created a new index (Aneuploidy Index, AI) that considers both, the degree and the extension of aneuploidy in the tumor. AI showed prognostic value independent of Dukes stage and identified a subset of patients with early stage tumors but with high risk of death. On the other hand, genomic damage mesured by AP-PCR (GDF) quantified allelic imbalances and also showed independent prognostic value. High GDF associated with p53 mutations, indicating that the inactivation of this gene could be a possible cause of production of allelic imbalances. Furthermore, GDF and AI were independent and, therefore, the combination of both variables was the best predictor of survival in patients with absence of remnant disease. Ploidy analysis in metastasis revealed that most of them show a population of diploid tumoral cells, suggesting that dissemination is accomplished by diploid cells. Furthermore, most metastasis reproduced the ploidy pattern of the primary tumor.In base of the distinct types of genomic damage observed we propose that they are the manifestation of 4 pathways of tumor progression with different prognostic factors: microsatellite instability pathway, diploid without microsatellite instability pathway (prognostic factor: Dukes stage), 'numerical' aneuploid pathway (prognostic factor: AI) and 'numerical-structural' aneuploid pathway (prognostic factor: GDF)
The hidden burden of somatic mutations.
<p>The extent of somatic mutations in healthy tissues can be thought of as an iceberg, such that the true prevalence of these mutations is only now being recognized as technologies have improved (right column). The limit of detection refers to the ability to identify a certain mutation within a given biopsy. The cumulative results of recent studies have shown that cancer-associated mutations (left column) are found in the population with a prevalence (middle column) that is indirectly proportional to the size of the clones and the age of the individuals. That is, large clones (>10% MAF of a given biopsy) have low prevalence and are typically found only in old individuals, whereas small clones (<0.1%) are very prevalent, also at mid age. CNV, Copy Number Variant; ddPCR, Digital Droplet PCR; in/dels, insertions and deletions; iPSC, Induced Pluripotent Stem-Cell; MAF, Mutant Allele Fraction; NGS, Next Generation Sequencing; RT-PCR, Real Time Polymerase Chain Reaction; SNP, Single Nucleotide Polymorphism; SNV, Single Nucleotide Variant.</p