85 research outputs found
Murine Norovirus: Propagation, Quantification, and Genetic Manipulation
Murine norovirus (MNV) is a positive- sense, plus- stranded RNA virus in the Caliciviridae family. It is the most common pathogen in biomedical research colonies. MNV is also related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Like the human noroviruses, MNV is an enteric virus that replicates in the intestine and is transmitted by the fecal- oral route. MNV replicates in murine macrophages and dendritic cells in cells in culture and in the murine host. This virus is often used to study mechanisms in norovirus biology, because human noroviruses are refractory to growth in cell culture. MNV combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Herein, we describe a panel of techniques that are commonly used to study MNV biology. Curr. Protoc. Microbiol 33:15K.2.1- 15K.2.61. ĆĀ© 2014 by John Wiley & Sons, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163819/1/cpmc15k02.pd
SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance
Renal medullary carcinoma (RMC) is an aggressive tumour driven by bi-allelic loss of SMARCB1 and tightly associated with sickle cell trait. However, the cell-of-origin and oncogenic mechanism remain poorly understood. Using single-cell sequencing of human RMC, we defined transformation of thick ascending limb (TAL) cells into an epithelial-mesenchymal gradient of RMC cells associated with loss of renal epithelial transcription factors TFCP2L1, HOXB9 and MITF and gain of MYC and NFE2L2-associated oncogenic and ferroptosis resistance programs. We describe the molecular basis for this transcriptional switch that is reversed by SMARCB1 re-expression repressing the oncogenic and ferroptosis resistance programs leading to ferroptotic cell death. Ferroptosis resistance links TAL cell survival with the high extracellular medullar iron concentrations associated with sickle cell trait, an environment propitious to the mutagenic events associated with RMC development. This unique environment may explain why RMC is the only SMARCB1-deficient tumour arising from epithelial cells, differentiating RMC from rhabdoid tumours arising from neural crest cells
SMARCB1 Regulates a TFCP2L1-Myc Transcriptional Switch Promoting Renal Medullary Carcinoma Transformation and Ferroptosis Resistance
Renal medullary carcinoma (RMC) is an aggressive tumour driven by bi-allelic loss of SMARCB1 and tightly associated with sickle cell trait. However, the cell-of-origin and oncogenic mechanism remain poorly understood. Using single-cell sequencing of human RMC, we defined transformation of thick ascending limb (TAL) cells into an epithelial-mesenchymal gradient of RMC cells associated with loss of renal epithelial transcription factors TFCP2L1, HOXB9 and MITF and gain of MYC and NFE2L2-associated oncogenic and ferroptosis resistance programs. We describe the molecular basis for this transcriptional switch that is reversed by SMARCB1 re-expression repressing the oncogenic and ferroptosis resistance programs leading to ferroptotic cell death. Ferroptosis resistance links TAL cell survival with the high extracellular medullar iron concentrations associated with sickle cell trait, an environment propitious to the mutagenic events associated with RMC development. This unique environment may explain why RMC is the only SMARCB1-deficient tumour arising from epithelial cells, differentiating RMC from rhabdoid tumours arising from neural crest cells
Targeted COVID-19 Vaccination (TAV-COVID) Considering Limited Vaccination Capacities-An Agent-Based Modeling Evaluation
(1) Background: The Austrian supply of COVID-19 vaccine is limited for now. We aim to provide evidence-based guidance to the authorities in order to minimize COVID-19-related hospitalizations and deaths in Austria. (2) Methods: We used a dynamic agent-based population model to compare different vaccination strategies targeted to the elderly (65 ā„ years), middle aged (45-64 years), younger (15-44 years), vulnerable (risk of severe disease due to comorbidities), and healthcare workers (HCW). First, outcomes were optimized for an initially available vaccine batch for 200,000 individuals. Second, stepwise optimization was performed deriving a prioritization sequence for 2.45 million individuals, maximizing the reduction in total hospitalizations and deaths compared to no vaccination. We considered sterilizing and non-sterilizing immunity, assuming a 70% effectiveness. (3) Results: Maximum reduction of hospitalizations and deaths was achieved by starting vaccination with the elderly and vulnerable followed by middle-aged, HCW, and younger individuals. Optimizations for vaccinating 2.45 million individuals yielded the same prioritization and avoided approximately one third of deaths and hospitalizations. Starting vaccination with HCW leads to slightly smaller reductions but maximizes occupational safety. (4) Conclusion: To minimize COVID-19-related hospitalizations and deaths, our study shows that elderly and vulnerable persons should be prioritized for vaccination until further vaccines are available
Initial adherence of EPEC, EHEC and VTEC to host cells
Initial adherence to host cells is the first step of the infection of enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic Escherichia coli (EHEC) and verotoxigenic Escherichia coli (VTEC) strains. The importance of this step in the infection resides in the fact that (1)Ā adherence is the first contact between bacteria and intestinal cells without which the other steps cannot occur and (2)Ā adherence is the basis of host specificity for a lot of pathogens. This review describes the initial adhesins of the EPEC, EHEC and VTEC strains. During the last few years, several new adhesins and putative colonisation factors have been described, especially in EHEC strains. Only a few adhesins (BfpA, AF/R1, AF/R2, Ral, F18 adhesins) appear to be host and pathotype specific. The others are found in more than one species and/or pathotype (EPEC, EHEC, VTEC). Initial adherence of EPEC, EHEC and VTEC strains to host cells is probably mediated by multiple mechanisms
Deranged sodium to sudden death
In February 2014, a group of scientists convened as part of the University of California Davis Cardiovascular Symposium to bring together experimental and mathematical modelling perspectives and discuss points of consensus and controversy on the topic of sodium in the heart. This paper summarizes the topics of presentation and discussion from the symposium, with a focus on the role of aberrant sodium channels and abnormal sodium homeostasis in cardiac arrhythmias and pharmacotherapy from the subcellular scale to the whole heart. Two following papers focus on Naāŗ channel structure, function and regulation, and Naāŗ/CaĀ²āŗ exchange and Naāŗ/Kāŗ ATPase. The UC Davis Cardiovascular Symposium is a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The focus on Naāŗ in the 2014 symposium stemmed from the multitude of recent studies that point to the importance of maintaining Naāŗ homeostasis in the heart, as disruption of homeostatic processes are increasingly identified in cardiac disease states. Understanding how disruption in cardiac Naāŗ-based processes leads to derangement in multiple cardiac components at the level of the cell and to then connect these perturbations to emergent behaviour in the heart to cause disease is a critical area of research. The ubiquity of disruption of Naāŗ channels and Naāŗ homeostasis in cardiac disorders of excitability and mechanics emphasizes the importance of a fundamental understanding of the associated mechanisms and disease processes to ultimately reveal new targets for human therapy.Centro de Investigaciones Cardiovasculare
- ā¦