2,047 research outputs found

    Dynamic regimes of fluids simulated by multiparticle-collision dynamics

    Get PDF
    We investigate the hydrodynamic properties of a fluid simulated with a mesoscopic solvent model. Two distinct regimes are identified, the `particle regime' in which the dynamics is gas-like, and the `collective regime' where the dynamics is fluid-like. This behavior can be characterized by the Schmidt number, which measures the ratio between viscous and diffusive transport. Analytical expressions for the tracer diffusion coefficient, which have been derived on the basis of a molecular-chaos assumption, are found to describe the simulation data very well in the particle regime, but important deviations are found in the collective regime. These deviations are due to hydrodynamic correlations. The model is then extended in order to investigate self-diffusion in colloidal dispersions. We study first the transport properties of heavy point-like particles in the mesoscopic solvent, as a function of their mass and number density. Second, we introduce excluded-volume interactions among the colloidal particles and determine the dependence of the diffusion coefficient on the colloidal volume fraction for different solvent mean-free paths. In the collective regime, the results are found to be in good agreement with previous theoretical predictions based on Stokes hydrodynamics and the Smoluchowski equation.Comment: 15 pages, 15 figure

    Power law tails of time correlations in a mesoscopic fluid model

    Get PDF
    In a quenched mesoscopic fluid, modelling transport processes at high densities, we perform computer simulations of the single particle energy autocorrelation function C_e(t), which is essentially a return probability. This is done to test the predictions for power law tails, obtained from mode coupling theory. We study both off and on-lattice systems in one- and two-dimensions. The predicted long time tail ~ t^{-d/2} is in excellent agreement with the results of computer simulations. We also account for finite size effects, such that smaller systems are fully covered by the present theory as well.Comment: 11 pages, 12 figure

    Quantum Estimation Methods for Quantum Illumination

    Get PDF
    Quantum illumination consists in shining quantum light on a target region immersed in a bright thermal bath, with the aim of detecting the presence of a possible low-reflective object. If the signal is entangled with the receiver, then a suitable choice of the measurement offers a gain with respect to the optimal classical protocol employing coherent states. Here, we tackle this detection problem by using quantum estimation techniques to measure the reflectivity parameter of the object, showing an enhancement in the signal-to-noise ratio up to 3 dB with respect to the classical case when implementing only local measurements. Our approach employs the quantum Fisher information to provide an upper bound for the error probability, supplies the concrete estimator saturating the bound, and extends the quantum illumination protocol to non-Gaussian states. As an example, we show how Schrodinger's cat states may be used for quantum illumination.Comment: Published versio

    Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography

    Get PDF
    © 2016 The Authors.Fluorescent proteins and dyes are routine tools for biological research to describe the behavior of genes, proteins, and cells, as well as more complex physiological dynamics such as vessel permeability and pharmacokinetics. The use of these probes in whole body in vivo imaging would allow extending the range and scope of current biomedical applications and would be of great interest. In order to comply with a wide variety of application demands, in vivo imaging platform requirements span from wide spectral coverage to precise quantification capabilities. Fluorescence molecular tomography (FMT) detects and reconstructs in three dimensions the distribution of a fluorophore in vivo. Noncontact FMT allows fast scanning of an excitation source and noninvasive measurement of emitted fluorescent light using a virtual array detector operating in free space. Here, a rigorous process is defined that fully characterizes the performance of a custom-built horizontal noncontact FMT setup. Dynamic range, sensitivity, and quantitative accuracy across the visible spectrum were evaluated using fluorophores with emissions between 520 and 660 nm. These results demonstrate that high-performance quantitative three-dimensional visible light FMT allowed the detection of challenging mesenteric lymph nodes in vivo and the comparison of spectrally distinct fluorescent reporters in cell culture

    Split Instability of a Vortex in an Attractive Bose-Einstein Condensate

    Full text link
    An attractive Bose-Einstein condensate with a vortex splits into two pieces via the quadrupole dynamical instability, which arises at a weaker strength of interaction than the monopole and the dipole instabilities. The split pieces subsequently unite to restore the original vortex or collapse.Comment: 4 pages, 4 figures, added figures and references, revised tex

    Mesoscale simulations of polymer dynamics in microchannel flows

    Full text link
    The non-equilibrium structural and dynamical properties of flexible polymers confined in a square microchannel and exposed to a Poiseuille flow are investigated by mesoscale simulations. The chain length and the flow strength are systematically varied. Two transport regimes are identified, corresponding to weak and strong confinement. For strong confinement, the transport properties are independent of polymer length. The analysis of the long-time tumbling dynamics of short polymers yields non-periodic motion with a sublinear dependence on the flow strength. We find distinct differences for conformational as well as dynamical properties from results obtained for simple shear flow

    Klein tunneling and Dirac potentials in trapped ions

    Get PDF
    We propose the quantum simulation of the Dirac equation with potentials, allowing the study of relativistic scaterring and the Klein tunneling. This quantum relativistic effect permits a positive-energy Dirac particle to propagate through a repulsive potential via the population transfer to negative-energy components. We show how to engineer scalar, pseudoscalar, and other potentials in the 1+1 Dirac equation by manipulating two trapped ions. The Dirac spinor is represented by the internal states of one ion, while its position and momentum are described by those of a collective motional mode. The second ion is used to build the desired potentials with high spatial resolution.Comment: 4 pages, 3 figures, minor change

    SenVis: Interactive Tensor-based Sensitivity Visualization

    Full text link
    Sobol's method is one of the most powerful and widely used frameworks for global sensitivity analysis, and it maps every possible combination of input variables to an associated Sobol index. However, these indices are often challenging to analyze in depth, due in part to the lack of suitable, flexible enough, and fast-to-query data access structures as well as visualization techniques. We propose a visualization tool that leverages tensor decomposition, a compressed data format that can quickly and approximately answer sophisticated queries over exponential-sized sets of Sobol indices. This way, we are able to capture the complete global sensitivity information of high-dimensional scalar models. Our application is based on a three-stage visualization, to which variables to be analyzed can be added or removed interactively. It includes a novel hourglass-like diagram presenting the relative importance for any single variable or combination of input variables with respect to any composition of the rest of the input variables. We showcase our visualization with a range of example models, whereby we demonstrate the high expressive power and analytical capability made possible with the proposed method

    Structural instability of vortices in Bose-Einstein condensates

    Full text link
    In this paper we study a gaseous Bose-Einstein condensate (BEC) and show that: (i) A minimum value of the interaction is needed for the existence of stable persistent currents. (ii) Vorticity is not a fundamental invariant of the system, as there exists a conservative mechanism which can destroy a vortex and change its sign. (iii) This mechanism is suppressed by strong interactions.Comment: 4 pages with 3 figures. Submitted to Phys. Rev. Let

    Agreement governing the activities of states on the Moon and other celestial bodies

    Get PDF
    The treaty on the Moon is not revolutionary but it embodies the legal rule for future activities of man on the Moon as opposed to the Space Treaty of 1967 which was too general. The new text is conservative but still allows some room for the developing States as in the law of the sea. The Moon is declared the "Common Heritage of Mankind" but the regime of exploitation of its resources is still blurred with imprecise guidelines still needing to be developed. The two superpowers cannot as in the past, ignore the rest of the world in the conquest of space and the fact that the U.N. is the depositary for ratifications, and not the two superpowers as in previous treaties, is the first sign of wider participation in the creation of Space Law
    • …
    corecore