1,703 research outputs found

    Correlated hopping of bosonic atoms induced by optical lattices

    Get PDF
    In this work we analyze a particular setup with ultracold atoms trapped in state-dependent lattices. We show that any asymmetry in the contact interaction translates into one of two classes of correlated hopping. After deriving the effective lattice Hamiltonian for the atoms, we obtain analytically and numerically the different phases and quantum phase transitions. We find for weak correlated hopping both Mott insulators and charge density waves, while for stronger correlated hopping the system transitions into a pair superfluid. We demonstrate that this phase exists for a wide range of interaction asymmetries and has interesting correlation properties that differentiate it from an ordinary atomic Bose-Einstein condensate.Comment: 24 pages with 9 figures, to appear in New Journal of Physic

    Power law tails of time correlations in a mesoscopic fluid model

    Get PDF
    In a quenched mesoscopic fluid, modelling transport processes at high densities, we perform computer simulations of the single particle energy autocorrelation function C_e(t), which is essentially a return probability. This is done to test the predictions for power law tails, obtained from mode coupling theory. We study both off and on-lattice systems in one- and two-dimensions. The predicted long time tail ~ t^{-d/2} is in excellent agreement with the results of computer simulations. We also account for finite size effects, such that smaller systems are fully covered by the present theory as well.Comment: 11 pages, 12 figure

    Limits to the analogue Hawking temperature in a Bose-Einstein condensate

    Full text link
    Quasi-one dimensional outflow from a dilute gas Bose-Einstein condensate reservoir is a promising system for the creation of analogue Hawking radiation. We use numerical modeling to show that stable sonic horizons exist in such a system under realistic conditions, taking into account the transverse dimensions and three-body loss. We find that loss limits the analogue Hawking temperatures achievable in the hydrodynamic regime, with sodium condensates allowing the highest temperatures. A condensate of 30,000 atoms, with transverse confinement frequency omega_perp=6800*2*pi Hz, yields horizon temperatures of about 20 nK over a period of 50 ms. This is at least four times higher than for other atoms commonly used for Bose-Einstein condensates.Comment: 9 pages, 4 figures, replaced with published versio

    Mesoscale simulations of polymer dynamics in microchannel flows

    Full text link
    The non-equilibrium structural and dynamical properties of flexible polymers confined in a square microchannel and exposed to a Poiseuille flow are investigated by mesoscale simulations. The chain length and the flow strength are systematically varied. Two transport regimes are identified, corresponding to weak and strong confinement. For strong confinement, the transport properties are independent of polymer length. The analysis of the long-time tumbling dynamics of short polymers yields non-periodic motion with a sublinear dependence on the flow strength. We find distinct differences for conformational as well as dynamical properties from results obtained for simple shear flow

    Scattering of coherent states on a single artificial atom

    Full text link
    In this work we theoretically analyze a circuit QED design where propagating quantum microwaves interact with a single artificial atom, a single Cooper pair box. In particular, we derive a master equation in the so-called transmon regime, including coherent drives. Inspired by recent experiments, we then apply the master equation to describe the dynamics in both a two-level and a three-level approximation of the atom. In the two-level case, we also discuss how to measure photon antibunching in the reflected field and how it is affected by finite temperature and finite detection bandwidth.Comment: 18 pages, 7 figure

    The Fermi Problem in Discrete Systems

    Full text link
    The Fermi two-atom problem illustrates an apparent causality violation in Quantum Field Theory which has to do with the nature of the built in correlations in the vacuum. It has been a constant subject of theoretical debate and discussions during the last few decades. Nevertheless, although the issues at hand could in principle be tested experimentally, the smallness of such apparent violations of causality in Quantum Electrodynamics prevented the observation of the predicted effect. In the present paper we show that the problem can be simulated within the framework of discrete systems that can be manifested, for instance, by trapped atoms in optical lattices or trapped ions. Unlike the original continuum case, the causal structure is no longer sharp. Nevertheless, as we show, it is possible to distinguish between "trivial" effects due to "direct" causality violations, and the effects associated with Fermi's problem, even in such discrete settings. The ability to control externally the strength of the atom-field interactions, enables us also to study both the original Fermi problem with "bare atoms", as well as correction in the scenario that involves "dressed" atoms. Finally, we show that in principle, the Fermi effect can be detected using trapped ions.Comment: Second version - minor change

    Observation of the Bloch-Siegert Shift in a Qubit-Oscillator System in the Ultrastrong Coupling Regime

    Get PDF
    We measure the dispersive energy-level shift of an LCLC resonator magnetically coupled to a superconducting qubit, which clearly shows that our system operates in the ultrastrong coupling regime. The large mutual kinetic inductance provides a coupling energy of 0.82\approx0.82~GHz, requiring the addition of counter-rotating-wave terms in the description of the Jaynes-Cummings model. We find a 50~MHz Bloch-Siegert shift when the qubit is in its symmetry point, fully consistent with our analytical model.Comment: Published version (4 pages, 4 figures), including supplementary material (2 pages, 4 figures

    Molecular Dynamics Simulation of Solvent-Polymer Interdiffusion. I. Fickian diffusion

    Full text link
    The interdiffusion of a solvent into a polymer melt has been studied using large scale molecular dynamics and Monte Carlo simulation techniques. The solvent concentration profile and weight gain by the polymer have been measured as a function of time. The weight gain is found to scale as t^{1/2}, which is expected for Fickian type of diffusion. The concentration profiles are fit very well assuming Fick's second law with a constant diffusivity. The diffusivity found from fitting Fick's second law is found to be independent of time and equal to the self diffusion constant in the dilute solvent limit. We separately calculated the diffusivity as a function of concentration using the Darken equation and found that the diffusivity is essentially constant for the concentration range relevant for interdiffusion.Comment: 17 pages and 7 figure

    Tunable coupling engineering between superconducting resonators: from sidebands to effective gauge fields

    Get PDF
    In this work we show that a tunable coupling between microwave resonators can be engineered by means of simple Josephson junctions circuits, such as dc- and rf-SQUIDs. We show that by controlling the time dependence of the coupling it is possible to switch on and off and modulate the cross-talk, boost the interaction towards the ultrastrong regime, as well as to engineer red and blue sideband couplings, nonlinear photon hopping and classical gauge fields. We discuss how these dynamically tunable superconducting circuits enable key applications in the fields of all optical quantum computing, continuous variable quantum information and quantum simulation - all within the reach of state of the art in circuit-QED experiments.Comment: 11 pages, 4 figure
    corecore