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We measure the dispersive energy-level shift of an LC resonator magnetically coupled to a super-
conducting qubit, which clearly shows that our system operates in the ultrastrong coupling regime.
The large mutual kinetic inductance provides a coupling energy of ≈ 0.82 GHz, requiring the ad-
dition of counter-rotating-wave terms in the description of the Jaynes-Cummings model. We find
a 50 MHz Bloch-Siegert shift when the qubit is in its symmetry point, fully consistent with our
analytical model.

The study of driven two-level systems has been at
the heart of important discoveries of fundamental effects,
both classical and quantum mechanical. A generic ex-
ample is the field of nuclear magnetic resonance where
the dynamics of nuclear spins is controlled by the ap-
plication of radio frequency pulses, resulting in coher-
ent Rabi oscillations of the spin moments [1]. In the
usual description, the applied harmonic field is decom-
posed into two mutually counterrotating fields. At reso-
nance in the weak-driving limit only the corotating com-
ponent interacts constructively with the spins, leading
to a Rabi frequency that scales linearly with the driv-
ing strength. Thus for this single component corotat-
ing regime the rotating-wave approximation (RWA) is
known to hold. If the driving is so strong that the Rabi
frequency approaches the Larmor frequency, the coun-
terrotating terms need to be taken into account. This
leads to an energy shift in the level transition, denoted as
the Bloch-Siegert shift [2, 3]. This non-RWA regime has
been observed in a variety of strongly driven systems. In
the field of quantum electrodynamics (QED) a quantum
Bloch-Siegert shift has been considered for atoms very
strongly coupled to single photons [4], although the ex-
perimental verification is difficult [5]. In the dispersive
regime this shift is sometimes referred to as dynamical
Stark shift [3]. For an atom that resides in a resonant
cavity the interaction strength g, the Rabi rate when the
cavity contains a single photon, is found to be typically
10−4 of the atomic Larmor frequency ωq/2π and the cav-
ity frequency ωr/2π. The Jaynes Cummings (JC) model
[6], that fully relies on the validity of the rotating-wave
approximation, therefore yields a good description of the
system [7].

In circuit QED [8] superconducting qubits play the role
of artificial atoms. With energy level transitions in the
microwave regime, they can be easily cooled to the ground
state at standard cryogenic temperatures. These “atoms”
can interact very strongly with on-chip resonant circuits
and reproduce many of the physical phenomena that had
been previously observed in cavities with natural atoms
[9, 10]. The large dipolar coupling achievable in supercon-
ducting circuits enabled exploring the strong-dispersive

limit [11]. One now starts addressing the ultrastrong
coupling regime g/ωr ∼ 1 [12–14]. In this Letter we
experimentally resolve the quantum Bloch-Siegert shift
in an LC resonator coupled to a flux qubit with a cou-
pling strength g/ωr ' 0.1, thus entering the ultrastrong
coupling regime.

Our system consists of a four-Josephson-junction flux
qubit [15], in which one junction is made smaller than
the other three by a factor of approximately 0.5. The
qubit is galvanically connected to a lumped-element LC
resonator [Fig. 1]. In previous work the employed LC
resonators were strongly coupled to the flux qubit [9, 16],
but since they were loaded by the impedance of the ex-
ternal circuit their quality factor was low. Flux qubits
have also been successfully coupled to high-quality trans-
mission line resonators [17]. In our experiment we use
an interdigitated finger capacitor in series with a long
superconducting wire, following the ideas from lumped-
element kinetic inductance detectors [18]. In order to
read out the qubit state a dc-switching SQUID magne-
tometer was placed on top of the qubit. The detection
procedure can be found in [19].

The qubit and the resonator were fabricated in the
same layer of evaporated aluminum using standard
lithography techniques [19]. A second aluminum layer
galvanically isolated from the first one contains the
SQUID and its circuitry together with the microwave an-
tenna to control the local frustration and to produce flux
and microwave pulses in the qubit [Fig. 1]. An external
coil is used to generate a magnetic field in the qubit and
SQUID in order to bias them at their operating points.
A second qubit with its own circuitry was also coupled
to the resonator [Fig. 1 (a)], but during the experiment
it was always flux biased such that it did not affect the
measurements.

The resonator is made of two capacitors, each con-
taining 50 fingers of 150 µm length and 1.5 µm width,
separated by 2 µm [Fig. 1 (a)]. The two capacitors
are linked by two 500 µm long superconducting wires
of 1 µm width. With these parameters we estimate
a capacitance of Cr ' 0.5 pF and an inductance of
Lr ' 1.5 nH, corresponding to a resonance frequency
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FIG. 1. (Color online) Circuit layout and images of the device.
(a) Schematic of the measurement setup. The interdigitated
capacitor of the LC resonator can be seen in the center of
the optical image, with the circuitry of the two SQUIDs next
to it (top left and bottom right); Cr/2 ' 0.25 pF and Lr '
1.5 nH. (b) Scanning electron micrograph (SEM) picture of
the SQUID circuit. The readout line is made to overlap with
a big volume of AuPd and Au to thermalize the quasiparticles
when the SQUID switches. (c) SEM picture of the qubit with
the SQUID on top. On the right of the picture the coupling
wire to the resonator of length l can be seen.

ωr/2π = 1/[2π
√
Lr(Cr/2)] ' 8.2 GHz. At temperatures

∼ 30 mK the resonator will be mostly in its ground state,
with zero-point current fluctuations Irms =

√
~ωr/2Lr '

40 nA.
The flux qubit, with an externally applied magnetic

flux of Φ ≈ Φ0/2, behaves effectively as a two-level sys-
tem (Φ0 = h/2e is the flux quantum). Since the sec-
ond excited state is at a much higher energy (typically
30 GHz), the effective Hamiltonian can be written as
Hq = −(εσz + ∆σx)/2 using the Pauli matrix notation
in the basis of the persistent current states {| � 〉, | 	 〉}.
Here ε = 2Ip(Φ−Φ0/2), with Ip the persistent current in
the qubit loop. ∆ is the tunnel coupling between the two
persistent current states. The qubit is inductively cou-
pled to a dc-SQUID detector with a mutual inductance
of MSQ ' 5 pH.

The qubit is galvanically attached to the resonator
[Fig. 1 (c)] with a coupling wire of length l = 5 µm,
width w = 100 nm and thickness t = 50 nm. To achieve
our coupling energy we use the kinetic inductance LK of
the wire that can easily be made larger than the geomet-
ric contribution. The kinetic inductance for our narrow
dirty wire is found from its normal state resistance [20]
LK = 0.14~Rn/kBTc ' (25± 2) pH. The strength of the
coupling can be approximated by ~g = IpIrmsLK [21, 22].
Since our ∼ 500 µm LC resonator is much smaller than
the wavelength at the resonance frequency (λr ≈ 20 mm),
the current is uniform along the superconducting wires

connecting the capacitor plates. Therefore the position
of the qubit along the inductor will not affect the coupling
strength.

The interaction between qubit and resonator can be
described by a coupling of dipolar nature Hint = ~g(a†+
a)σz in the basis of the persistent current states, where a†

(a) is the photon creation (annihilation) operator in the
basis {|n〉} of Fock states of the resonator. In the basis
of the eigenstates of the qubit, {|g〉, |e〉}, the Hamiltonian
reads

HE =
~ωq

2
σz + ~ωr

(
a†a+

1
2

)
+ ~g (cos(θ)σz − sin(θ)σx) (a+ a†), (1)

with ~ωq ≡
√
ε2 + ∆2 and tan(θ) ≡ ∆/ε. Note that the

RWA has not been employed to obtain Eq. 1.
The qubit-resonator interaction can be rewritten in

terms of rising and lowering operators σ± = (σx±iσy)/2.
This yields corotating terms ∼ (σ+a + σ−a

†) as well as
counterrotating terms ∼ (σ+a

† + σ−a). In the regime
where g is comparable to ωq and ωr, the usual RWA is
not valid and the counter-rotating terms cannot be ne-
glected. In order to evaluate their effect on the system, we
perform a unitary transformation H ′E = eSHe−S , with
S = γ(σ+a

†−σ−a) and γ = −g sin(θ)/(ωq +ωr) to elimi-
nate the counter-rotating terms. If |γ| � 1 we can safely
neglect off-resonant terms of order γ2. Off-diagonal two-
photon processes can be removed by similar canonical
transformations [3]. For frequencies not too far from res-
onance, keeping terms up to second order in γ, we obtain
the effective Hamiltonian

FIG. 2. (Color online) Measurement scheme and energy-level
diagram. (a) Schematic of the measurement protocol to per-
form qubit spectroscopy. (b) JC ladder depicting the energy-
level structure of the system of a flux qubit coupled to an LC
resonator. The levels are drawn for the case δ = ωq − ωr < 0.
The arrows represent the level-transitions that are visible in
the spectrum. The dashed lines represent the uncoupled qubit
and resonator states. δq and δr are the dispersive shifts that
the qubit and the resonator induce to each other.

H ′E =
~ωq

2
σz+~ωr

(
n̂+

1
2

)
+~ωBS

[
σz

(
n̂+

1
2

)
− 1

2

]
+ ~g(n̂)a†σ− + ~aσ+g(n̂), (2)

with n̂ = a†a. Here the term proportional to ωBS ≡
g2 sin2(θ)/(ωq+ωr) describes the Bloch-Siegert shift. The
term g cos(θ)σz(a+ a†) from Eq. 1 has been neglected as
to second order it only adds a global phase. The coupling
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constant has been renormalized to g(n̂) ≡ −g sin(θ)[1 −
n̂ ωBS/(ωq + ωr)].

In the basis {|g, n + 1〉, |e, n〉}, the effective Hamilto-
nian [Eq. 2] is box-diagonal. The box corresponding
to n photons has eigenvalues λn,m=0,1 = ~ωr (n+ 1) +

(~/2)(−1)m
√
δ2n+1 + 4g2

n+1, λ0,g = −~δ/2, where δ =
ωq −ωr is the detuning, and δn+1 = δ+ 2ωBS(n+ 1) and
gn+1 = g sin(θ)

√
n+ 1[1− (n+ 1)ωBS/(ωq + ωr)]. m = 0

(1) corresponds to the qubit in the ground (excited) state.
In the limit ωBS → 0, the JC result is recovered [8]. For
the qubit in the ground state the oscillator resonance is
shifted with respect to the JC model.

We prepare the qubit in the ground state by cooling
it to 20 mK in a dilution refrigerator. Using the pro-
tocol shown in Fig. 2 (a), we measure the spectrum of
the qubit-resonator system [Fig. 3]. To obtain a higher
resolution in the relevant region around 8.15 GHz, we
repeated the spectroscopy using lower driving power in
combination with the application of flux pulses in order
to equalize the qubit signal by reading out far from its
degeneracy point [Fig. 4] [16]. We can identify the energy-
level transitions on the basis of the JC ladder shown in
Fig. 2 (b). A large avoided crossing between states |g, 1〉
and |e, 0〉 is observed around a frequency of ∼ 8 GHz.
This is very close to the estimated resonance frequency
of the oscillator. The energy splitting (2g/2π)(∆/ωr)
[Fig. 3 (inset)] is approximately 0.9 GHz. A combined
least-squares fit of the full Hamiltonian [Eq. 1] of the
data from Figs. 3, 4 leads to ∆/h = (4.20 ± 0.02) GHz,
Ip = (500 ± 10) nA, ωr/2π = (8.13 ± 0.01) GHz and
g/2π = (0.82± 0.03) GHz.
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FIG. 3. (Color online) Spectrum of the flux qubit coupled to
the LC resonator. An avoided-level crossing is observed at
a frequency of 8.13 GHz. The weak transition near 8 GHz
is associated with excited photons due to thermal population
of the qubit excited state (Teff ∼ 100 mK at ∼ 4 − 5 GHz
energy splitting). (Inset) Zoom in around the resonance be-
tween qubit and oscillator. The splitting on resonance is
2g sin(θ)/2π ' 0.9 GHz.

The value of g obtained is in good agreement with
IpIrmsLK/h = (0.83 ± 0.08) GHz. Thus we find g/ωr ≈
0.1. This large value brings us into the ultrastrong cou-
pling regime, and below we will demonstrate that the
system indeed shows ultrastrong coupling characteristics.

FIG. 4. (Color online) Bloch-Siegert shift. (a) Spectrum in
proximity to the resonator frequency obtained using lower
driving power than in Fig. 3 and flux pulses [16]. The solid
black line is the fit of Eq. 1 and the dashed green line is a
plot of the JC model (Eq. 1 without counter-rotating terms).
The dotted line indicates the bare resonator frequency ωr. A
clear deviation between the dashed line and the data can be
observed around the symmetry point of the qubit. A transi-
tion associated with thermal population of the qubit excited
state can be observed around 8 GHz. (b) Difference between
measurement (blue dots) and the prediction of the JC model
(dashed green line). The solid black curve is the same as the
solid black curve in (a) and the dashed red curve represents
λ1,g − λ0,g. All the curves are subtracted from the JC model.
The blue dots are peak values extracted from Lorentzian fits
to frequency scans at fixed flux, with the error bars represent-
ing the full width at half maximum of each Lorentzian.

The spectral line of the resonator can be resolved when
it is detuned several GHz away from the qubit [Fig. 3].
This could be caused by the external driving when it is
resonant with the oscillator. By loading photons in it, the
oscillator can drive the qubit off-resonantly by their large
coupling. Another possibility is an adiabatic shift during
state readout through the anticrossing of the qubit and
resonator energies. The qubit readout pulse produces a
negative shift of -2 mΦ0 in magnetic flux, making the
spectral amplitude asymmetric with respect to the qubit
symmetry point [Fig. 3]. For our parameters, this shift
is coincidental with the avoided level crossing with the
oscillator. Then, a state containing one photon in the
resonator (e. g., Φ/Φ0 − 0.5 = 4 mΦ0 in Fig. 3) can be
converted into an excited state of the qubit with very
high probability, as the Landau-Zener tunneling rate is
very low. Both effects, off-resonant driving and adiabatic
shifting, would explain that the sign of the spectral line
of the resonator coincides with the one of the qubit on
both sides of the symmetry point. Irrespective of the
mechanism, the spectral features of Fig. 3 allow us to
give a low bound for the quality factor of the resonator
Q > 103.

In Figs. 4 (a), (b) a marked difference in the resonator
frequency between the fit of Eq. 1 (solid black line) and
the JC model, Eq. 1 with the counterrotating terms re-
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moved, (dashed green line) can be clearly resolved [23].
The difference is largest (50 MHz) at the symmetry point
of the qubit. This is the Bloch-Siegert shift ωBS associ-
ated with the counterrotating terms [Eq. 2]. The maxi-
mum difference occurs at the symmetry point as outside
of it the effective coupling g sin(θ) decreases with increas-
ing ε. Figure 4 (b) shows in a dashed red curve a plot
of λ1,g − λ0,g subtracted from the JC model. The agree-
ment between the measured spectral peaks of the res-
onator and the calculated values using λ1,g − λ0,g is very
good. Concerning the qubit, according to λ0,e − λ0,g it
should experience the same shift ωBS as the resonator,
but with opposite sign. Since the qubit line width at the
symmetry point around 4 GHz is very large (≈ 80 MHz),
the Bloch-Siegert shift cannot be clearly resolved there.

In conclusion, we have measured the Bloch-Siegert shift
in an LC resonator strongly coupled to a flux qubit. This
demonstrates the failure of the rotating-wave approxima-
tion in this ultrastrong coupling regime of circuit QED.
The large coupling of 0.82 GHz is achieved using the ki-
netic inductance of the wire that is shared by the two
systems. The coupling could easily be further enhanced
by increasing the kinetic inductance or by inclusion of a
Josephson junction [14, 22]. This will allow the explo-
ration of the system deeply into the ultrastrong coupling
regime where g is comparable with ωr.
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P. Forn-Dı́az,1 J. Lisenfeld,1,2 D. Marcos,3 J. J. Garćıa-Ripoll,4 E. Solano,5,6 C. J. P. M. Harmans,1 and J. E. Mooij1

1Quantum Transport Group, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, The Netherlands
2Physikalisches Institut and DFG Center for Functional Nanostructures (CFN),

Karlsruhe Institute of Technology, Karlsruhe, Germany
3Theory and Simulation of Materials, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain

4Instituto de F́ısica Fundamental, CSIC, Serrano 113-bis, 28006 Madrid, Spain
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The system of a flux qubit coupled to an LC resonator
can be modeled using the Hamiltonian

HE =
~ωq

2
σz + ~ωr

(
a†a+

1
2

)
+ ~g (cos(θ)σz − sin(θ)σx) (a+ a†), (3)

with ~ωq ≡
√
ε2 + ∆2, ε = 2Ip(Φ − Φ0/2) and tan(θ) ≡

∆/ε. If the rotating-wave approximation is applied, Eq. 3
becomes

HJC =
~ωq

2
σz + ~ωr

(
a†a+

1
2

)
− ~g sin(θ)

(
σ+a+ σ−a

†) , (4)

known as the Jaynes-Cummings [JC] model.
A least-squares fit of the full spectrum of the system

using Eq. 3 can be seen in Fig. 3 (solid black line), with
fitted parameters g/2π = 0.82± 0.03 GHz, ∆/h = 4.20±
0.02 GHz, Ip = 500 ± 10 nA, ωr/2π = 8.13 ± 0.01 GHz.
Eq. 4 is also plotted using these fitted parameters (dashed
blue line). No significant difference can be observed be-
tween the two curves, except a small deviation at the
symmetry point (Φ = Φ0/2) for all transitions.

FIG. 5. Spectrum fitted using Eq. 3 (solid black line). In
dashed blue is a plot of Eq. 4 (the JC model) using the fitted
parameters.

A fit of the same spectrum using the JC model (Eq. 4)
can be performed. This can be seen in Fig. 6 (dashed blue
line), with fitted parameters g/2π = 0.72 ± 0.02 GHz,
∆/h = 4.21 ± 0.02 GHz, Ip = 500 ± 10 nA, ωr/2π =
8.13 ± 0.01 GHz. Eq. 3 is plotted using these fitted pa-
rameters (solid black line). The difference between the
two curves is similar to Fig. 5, with a small deviation at
the symmetry point of the qubit.

FIG. 6. Spectrum fitted using Eq. 4, the JC model (dashed
blue line). In solid black is a plot of Eq. 3 using the fitted
parameters.

To observe more clearly the deviations between the ex-
act model and te JC model, a zoom in is made of the
spectrum at the region near 8 GHz. Fig. 7 is a zoom in
of Fig. 5 showing the fit to Eq. 3 (solid black line). Also
the JC solution of Eq. 4 is plotted (dashed blue line)
using the same fitting parameters values to Eq. 3. Equa-
tion 3 fits the data in all points (open circles represent
Lorentzian fits to each data trace), while Eq. 4 deviates
at the symmetry point of the qubit. The deviation is
attributed to the counter-rotating terms that were ne-
glected by applying the rotating-wave approximation in
Eq. 3.

Figure 8 shows a zoom in of Fig. 6 with the dashed line
representing the fit to the JC solution Eq. 4. Also Eq. 3
is plotted (solid black line) using the fit parameter values
of Fig. 6.
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FIG. 7. Zoom in of Fig. 5 around 8 GHz with the spectrum
fitted using Eq. 3 (solid black line). In dashed blue is Eq. 4
using the fitted parameters.

FIG. 8. Zoom in of Fig. 6 around 8 GHz with the spectrum
fitted using Eq. 4, the JC model (dashed blue line). In solid
blue is Eq. 3 using the fitted parameters.

In this case the best fit of the JC model (dashed line)
does not fit all data points, in particular it does not fit the
ones around Φ = Φ0/2. On the other hand, Eq. 3 using
the fitted parameters from Fig. 6 leads to lower values of
the transition near 8.22 GHz than Fig. 7.

If the JC model was valid the fits in Fig. 5 (and Fig. 7)
and 6 (and Fig. 8) should lead to the same result. This
is not the case, indicating that the rotating-wave approx-
imation is not applicable. This is most clearly seen in
Fig. 8, where the Jaynes-Cummings model fails to fit all
data points, in particular in the range where the counter-
rotating terms included in Eq. 3 have their largest con-
tribution providing maximum Bloch-Siegert shift.
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