158 research outputs found
Rationale and design of the Clinical Evaluation of Magnetic Resonance Imaging in Coronary heart disease 2 trial (CE-MARC 2): a prospective, multicenter, randomized trial of diagnostic strategies in suspected coronary heart disease
Background:
A number of investigative strategies exist for the diagnosis of coronary heart disease (CHD). Despite the widespread availability of noninvasive imaging, invasive angiography is commonly used early in the diagnostic pathway. Consequently, approximately 60% of angiograms reveal no evidence of obstructive coronary disease. Reducing unnecessary angiography has potential financial savings and avoids exposing the patient to unnecessary risk. There are no large-scale comparative effectiveness trials of the different diagnostic strategies recommended in international guidelines and none that have evaluated the safety and efficacy of cardiovascular magnetic resonance.<p></p>
Trial Design:
CE-MARC 2 is a prospective, multicenter, 3-arm parallel group, randomized controlled trial of patients with suspected CHD (pretest likelihood 10%-90%) requiring further investigation. A total of 1,200 patients will be randomized on a 2:2:1 basis to receive 3.0-T cardiovascular magnetic resonance–guided care, single-photon emission computed tomography–guided care (according to American College of Cardiology/American Heart Association appropriate-use criteria), or National Institute for Health and Care Excellence guidelines–based management. The primary (efficacy) end point is the occurrence of unnecessary angiography as defined by a normal (>0.8) invasive fractional flow reserve. Safety of each strategy will be assessed by 3-year major adverse cardiovascular event rates. Cost-effectiveness and health-related quality-of-life measures will be performed.<p></p>
Conclusions:
The CE-MARC 2 trial will provide comparative efficacy and safety evidence for 3 different strategies of investigating patients with suspected CHD, with the intension of reducing unnecessary invasive angiography rates. Evaluation of these management strategies has the potential to improve patient care, health-related quality of life, and the cost-effectiveness of CHD investigation
Language and social/emotional problems identified at a universal developmental assessment at 30 months
Non peer reviewedPublisher PD
Individual component analysis of the multi-parametric cardiovascular magnetic resonance protocol in the CE-MARC trial
Background: The CE-MARC study assessed the diagnostic performance investigated the use of cardiovascular magnetic resonance (CMR) in patients with suspected coronary artery disease (CAD). The study used a multi-parametric CMR protocol assessing 4 components: i) left ventricular function; ii) myocardial perfusion; iii) viability (late gadolinium enhancement (LGE)) and iv) coronary magnetic resonance angiography (MRA). In this pre-specified CE-MARC sub-study we assessed the diagnostic accuracy of the individual CMR components and their combinations. Methods: All patients from the CE-MARC population (n = 752) were included using data from the original blinded-read. The four individual core components of the CMR protocol was determined separately and then in paired and triplet combinations. Results were then compared to the full multi-parametric protocol. Results: CMR and X-ray angiography results were available in 676 patients. The maximum sensitivity for the detection of significant CAD by CMR was achieved when all four components were used (86.5 %). Specificity of perfusion (91.8 %), function (93.7 %) and LGE (95.8 %) on its own was significantly better than specificity of the multi-parametric protocol (83.4 %) (all P < 0.0001) but with the penalty of decreased sensitivity (86.5 % vs. 76.9 %, 47.4 % and 40.8 % respectively). The full multi-parametric protocol was the optimum to rule-out significant CAD (Likelihood Ratio negative (LR-) 0.16) and the LGE component alone was the best to rue-in CAD (LR+ 9.81). Overall diagnostic accuracy was similar with the full multi-parametric protocol (85.9 %) compared to paired and triplet combinations. The use of coronary MRA within the full multi-parametric protocol had no additional diagnostic benefit compared to the perfusion/function/LGE combination (overall accuracy 84.6 % vs. 84.2 % (P = 0.5316); LR- 0.16 vs. 0.21; LR+ 5.21 vs. 5.77). Conclusions: From this pre-specified sub-analysis of the CE-MARC study, the full multi-parametric protocol had the highest sensitivity and was the optimal approach to rule-out significant CAD. The LGE component alone was the optimal rule-in strategy. Finally the inclusion of coronary MRA provided no additional benefit when compared to the combination of perfusion/function/LGE. Trial registration: Current Controlled Trials ISRCTN77246133
Insights into Long-Lasting Protection Induced by RTS,S/AS02A Malaria Vaccine: Further Results from a Phase IIb Trial in Mozambican Children
Background: The pre-erythrocytic malaria vaccine RTS,S/AS02A has shown to confer protection against clinical malaria for at least 21 months in a trial in Mozambican children. Efficacy varied between different endpoints, such as parasitaemia or clinical malaria; however the underlying mechanisms that determine efficacy and its duration remain unknown. We performed a new, exploratory analysis to explore differences in the duration of protection among participants to better understand the protection afforded by RTS,S. Methodology/Principal Findings: The study was a Phase IIb double-blind, randomized controlled trial in 2022 children aged 1 to 4 years. The trial was designed with two cohorts to estimate vaccine efficacy against two different endpoints: clinical malaria (cohort 1) and infection (cohort 2). Participants were randomly allocated to receive three doses of RTS,S/AS02A or control vaccines. We did a retrospective, unplanned sub-analysis of cohort 2 data using information collected for safety through the health facility-based passive case detection system. Vaccine efficacy against clinical malaria was estimated over the first six-month surveillance period (double-blind phase) and over the following 12 months (single-blind phase), and analysis was per-protocol. Adjusted vaccine efficacy against first clinical malaria episodes in cohort 2 was of 35.4% (95% CI 4.5-56.3; p = 0.029) over the double-blind phase and of 9.0% (230.6-36.6; p = 0.609) during the single-blind phase. Conclusions/Significance: Contrary to observations in cohort 1, where efficacy against clinical malaria did not wane over time, in cohort 2 the efficacy decreases with time. We hypothesize that this reduced duration of protection is a result of the early diagnosis and treatment of infections in cohort 2 participants, preventing sufficient exposure to asexual-stage antigens. On the other hand, the long-term protection against clinical disease observed in cohort 1 may be a consequence of a prolonged exposure to low-dose blood-stage asexual parasitaemia
Safety, Immunogenicity and Duration of Protection of the RTS,S/AS02D Malaria Vaccine: One Year Follow-Up of a Randomized Controlled Phase I/IIb Trial
The RTS,S/AS02(D) vaccine has been shown to have a promising safety profile, to be immunogenic and to confer protection against malaria in children and infants.We did a randomized, controlled, phase I/IIb trial of RTS,S/AS02(D) given at 10, 14 and 18 weeks of age staggered with routine immunization vaccines in 214 Mozambican infants. The study was double-blind until the young child completed 6 months of follow-up over which period vaccine efficacy against new Plasmodium falciparum infections was estimated at 65.9% (95% CI 42.6-79.8, p<0.0001). We now report safety, immunogenicity and estimated efficacy against clinical malaria up to 14 months after study start. Vaccine efficacy was assessed using Cox regression models. The frequency of serious adverse events was 32.7% in the RTS,S/AS02(D) and 31.8% in the control group. The geometric mean titers of anti-circumsporozoite antibodies declined from 199.9 to 7.3 EU/mL from one to 12 months post dose three of RTS,S/AS02(D), remaining 15-fold higher than in the control group. Vaccine efficacy against clinical malaria was 33% (95% CI: -4.3-56.9, p = 0.076) over 14 months of follow-up. The hazard rate of disease per 2-fold increase in anti-CS titters was reduced by 84% (95% CI 35.1-88.2, p = 0.003).The RTS,S/AS02(D) malaria vaccine administered to young infants has a good safety profile and remains efficacious over 14 months. A strong association between anti-CS antibodies and risk of clinical malaria has been described for the first time. The results also suggest a decrease of both anti-CS antibodies and vaccine efficacy over time.ClinicalTrials.gov NCT00197028
Assessment of aortic stiffness by cardiovascular magnetic resonance following the treatment of severe aortic stenosis by TAVI and surgical AVR
Aortic stiffness is increasingly used as an independent predictor of adverse cardiovascular outcomes. We sought to compare the impact of transcatheter aortic valve implantation (TAVI) and surgical aortic valve replacement (SAVR) upon aortic vascular function using cardiovascular magnetic resonance (CMR) measurements of aortic distensibility and pulse wave velocity (PWV).A 1.5 T CMR scan was performed pre-operatively and at 6 m post-intervention in 72 patients (32 TAVI, 40 SAVR; age 76 ± 8 years) with high-risk symptomatic severe aortic stenosis. Distensibility of the ascending and descending thoracic aorta and aortic pulse wave velocity were determined at both time points. TAVI and SAVR patients were comparable for gender, blood pressure and left ventricular ejection fraction. The TAVI group were older (81 ± 6.3 vs. 72.8 ± 7.0 years, p < 0.05) with a higher EuroSCORE II (5.7 ± 5.6 vs. 1.5 ± 1.0 %, p < 0.05). At 6 m, SAVR was associated with a significant decrease in distensibility of the ascending aorta (1.95 ± 1.15 vs. 1.57 ± 0.68 × 10(-3)mmHg(-1), p = 0.044) and of the descending thoracic aorta (3.05 ± 1.12 vs. 2.66 ± 1.00 × 10(-3)mmHg(-1), p = 0.018), with a significant increase in PWV (6.38 ± 4.47 vs. 11.01 ± 5.75 ms(-1), p = 0.001). Following TAVI, there was no change in distensibility of the ascending aorta (1.96 ± 1.51 vs. 1.72 ± 0.78 × 10(-3)mmHg(-1), p = 0.380), descending thoracic aorta (2.69 ± 1.79 vs. 2.21 ± 0.79 × 10(-3)mmHg(-1), p = 0.181) nor in PWV (8.69 ± 6.76 vs. 10.23 ± 7.88 ms(-1), p = 0.301) at 6 m.Treatment of symptomatic severe aortic stenosis by SAVR but not TAVI was associated with an increase in aortic stiffness at 6 months. Future work should focus on the prognostic implication of these findings to determine whether improved patient selection and outcomes can be achieved
Spatio-Temporal Transmission Patterns of Black-Band Disease in a Coral Community
Transmission mechanisms of black-band disease (BBD) in coral reefs are poorly understood, although this disease is considered to be one of the most widespread and destructive coral infectious diseases. The major objective of this study was to assess transmission mechanisms of BBD in the field based on the spatio-temporal patterns of the disease
Impact of RTS,S/AS02A and RTS,S/AS01B on Genotypes of P. falciparum in Adults Participating in a Malaria Vaccine Clinical Trial
Objective:RTS,S, a candidate vaccine for malaria, is a recombinant protein expressed in yeast containing part of the circumsporozoite protein (CSP) sequence of 3D7 strain of Plasmodium falciparum linked to the hepatitis B surface antigen in a hybrid protein. The RTS,S antigen is formulated with GSK Biologicals\u27 proprietary Adjuvant Systems AS02A or AS01B. A recent trial of the RTS,S/AS02A and RTS,S/AS01B vaccines evaluated safety, immunogenicity and impact on the development of parasitemia of the two formulations. Parasite isolates from this study were used to determine the molecular impact of RTS,S/AS02A and RTS,S/AS01B on the multiplicity of infection (MOI) and the csp allelic characteristics of subsequent parasitemias.Design:The distribution of csp sequences and the MOI of the infecting strains were examined at baseline and in break-through infections from vaccinated individuals and from those receiving a non-malarial vaccine.Setting:The study was conducted in Kombewa District, western Kenya.Participants:Semi-immune adults from the three study arms provided isolates at baseline and during break-through infections.Outcome:Parasite isolates used for determining MOI and divergence of csp T cell–epitopes were 191 at baseline and 87 from break-through infections.Results:Grouping recipients of RTS,S/AS01A and RTS,S/AS02B together, vaccine recipients identified as parasite-positive by microscopy contained significantly fewer parasite genotypes than recipients of the rabies vaccine comparator (median in pooled RTS,S groups: 3 versus 4 in controls, P = 0.0313). When analyzed separately, parasitaemic individuals in the RTS,S/AS01B group, but not the RTS,S/AS02A group, were found to have significantly fewer genotypes than the comparator group. Two individual amino acids found in the vaccine construct (Q339 in Th2R and D371 in Th3R) were observed to differ in incidence between vaccine and comparator groups but in different directions; parasites harboring Q339 were less common among pooled RTS,S/AS vaccine recipients than among recipients of rabies vaccine, whereas parasites with D371 were more common among the RTS,S/AS groups.Conclusions:It is concluded that both RTS,S/AS vaccines reduce multiplicity of infection. Our results do not support the hypothesis that RTS,S/AS vaccines elicit preferential effects against pfcsp alleles with sequence similarity to the 3D7 pfcsp sequence employed in the vaccine construct
Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile function in hypertrophic cardiomyopathy
Background Regional contractile dysfunction is a frequent finding in hypertrophic cardiomyopathy (HCM). We aimed to investigate the contribution of different tissue characteristics in HCM to regional contractile dysfunction. Methods We prospectively recruited 50 patients with HCM who underwent cardiovascular magnetic resonance (CMR) studies at 3.0 T including cine imaging, T1 mapping and late gadolinium enhancement (LGE) imaging. For each segment of the American Heart Association model segment thickness, native T1, extracellular volume (ECV), presence of LGE and regional strain (by feature tracking and tissue tagging) were assessed. The relationship of segmental function, hypertrophy and tissue characteristics were determined using a mixed effects model, with random intercept for each patient. Results Individually segment thickness, native T1, ECV and the presence of LGE all had significant associations with regional strain. The first multivariable model (segment thickness, LGE and ECV) demonstrated that all strain parameters were associated with segment thickness (P < 0.001 for all) but not ECV. LGE (Beta 2.603, P = 0.024) had a significant association with circumferential strain measured by tissue tagging. In a second multivariable model (segment thickness, LGE and native T1) all strain parameters were associated with both segment thickness (P < 0.001 for all) and native T1 (P < 0.001 for all) but not LGE. Conclusion Impairment of contractile function in HCM is predominantly associated with the degree of hypertrophy and native T1 but not markers of extracellular fibrosis (ECV or LGE). These findings suggest that impairment of contractility in HCM is mediated by mechanisms other than extracellular expansion that include cellular changes in structure and function. The cellular mechanisms leading to increased native T1 and its prognostic significance remain to be established
- …