9 research outputs found

    Myocardial infarction ´through the window´: dual dynamics for cardiac fibroblasts activation

    Get PDF
    Activated cardiac fibroblasts (CFs) are responsible for the healing of the heart tissue after a myocardial infarction (MI). Based on high throughput technologies, several groups have recently demonstrated their heterogeneity and a unique role of each subpopulation of CFs during the ventricular remodelling process. This is relevant towards the discovery of personalized treatments to control the initial post-MI healing scar that will contribute to preserve ventricular function and prevent the onset of heart failure. However, little is known about the moment that CFs are activated, and which genes are potentially involved in this process. Using a mouse model for MI and single cell RNA-Seq, we demonstrate that the activation of Reparative Cardiac Fibroblasts (RCFs), the CFs responsible for the healing scar, happens within the first week after MI. Interestingly, our data reveals that all CFs show high expression of the top markers genes for RCF in a specific moment, but only few of them finally evolve to an RCF transcriptomic identity. Furthermore, we describe two different molecular dynamics that could give rise to this activation and, in consequence, the appearance of definitive RCFs. Using Spatial Transcriptomics, we localized the genes related to each dynamic in different anatomical regions of the infarcted heart, but, remarkably, only one persists seven days after MI. These results highlight the existence of a specific “window of activation” of RCFs at the beginning of the ventricular remodelling process. This potential ´therapeutical window´ could allow us to regulate the size of the healing scar and, in consequence, the poor prognosis for patients that have suffered an ischemic event.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Tissue engineered scaffolds for mimetic autografts

    Get PDF
    Introduction: Despite its regenerative capacity, bone healing can be compromised, leading to delayed fracture regeneration and nonunion. Due to the scarcity of bone tissue that can be used as autograft, novel tissue engineering strategies arise as a promising solution by using biocompatible materials. Methods: Our objective is the development of engineered autografts capable of efficiently treat fracture nonunion. For this purpose, we designed polycaprolactone (PCL) autografts surrounded by a porous membrane mimicking periosteum. To assess their regenerative capacity, these scaffolds were tested in critical size femur defect for ten weeks carrying out μCT and histological analysis. Additionally, we are focusing on the generation of PCL biocomposites, such as poly ethyl-acrylate (PEA) covered PCL membranes which can enhance morphogen functionalization, reducing the effective BMP dose. Results: At the mCT level, structural mimetic PCL scaffolds, showed no significant difference in bone healing (Empty group, 11.47±4.93 mm3; MA, 14.95±3.09 mm3, p=0.1711). Histological analysis demonstrates that MEW PCL mimicking periosteum enhances bone growth, but insufficient for successful healing. However, once functionalized with PEA and BMP-2, these implants showed highly improved regeneration (CTL group, 11,47±4,93 mm3; BMP-2 group, 49,24±13,20 mm3, p = 0.0001). Figure 1. These implants were loaded with BMP-2 solutions previously studied in vitro to estimate morphogen dose, which resulted in 55.64±14.83 ng (n=6). Conclusions and discussion: In conclusion, PEA functionalized mimetic autografts show an important increase in bone healing, enhancing BMP-2 effects, which provide representative regeneration with a 100 folds lower dose than typically described in literature

    Tissue engineered mimetic periosteum for efficient delivery of rhBMP-2

    Get PDF
    Background: Despite its unique regenerative capacity, bone healing can be compromised, leading to delayed fracture regeneration and consequently nonunion. Due to the scarcity of autografts and the problems associated with a supraphysiological use of rhBMP-2, novel tissue engineering strategies arise as a promising solution to overcome nonunions and related bone pathologies. Purpose: To clinically deal with fracture nonunion, we designed engineered mimetic autografts consisting of a personalized polycaprolactone (PCL) scaffold surrounded by a porous PCL membrane mimicking the periosteum synthesized by melt electrowriting (MEW) (Figure 1). Methods: MEW membrane was functionalized with poly ethyl acrylate (PEA) and Fibronectin for efficient rhBMP-2 binding and delivery. The regenerative capacity and therapeutic potential of these scaffolds were tested in vitro for osteoblast differentiation and vivo in a critical size femur defect in Sprague Dawley rats (n=6-7 animals/group) (ethical approval 073-20). Regenerative effects were assessed by qPCR, q-mCT and histological analysis. Non-parametric Kruskal Wallis test was used for statistical analysis. Results: We selected the two lowest dose implants (10 mg/ml, 51.94±8.84 ng and 25 mg/ml, 186.8±17.33) to assess release profile over time and for in vivo therapeutic effect. In vitro, single loading of 186 ng of rhBMP-2 allows similar differentiation potential that standard osteogenic differentiation medium where fresh rhBMP-2 was added twice weekly (Figure 2). In vivo, regarding bone regeneration, quantitative μCT analysis shows great bone healing of defects treated with rhBMP-2 at concentrations of 25 μg/ml (186 ng) and 10 μg/ml (52 ng). Control group, 6.80±2.47 mm3; 10 μg/ml BMP-2 group 19.53±4.266 mm3, *p=0.0324; 25 μg/ml BMP-2 group 24.48±11.30 mm3, **p=0.0087. In addition, histological analysis was carried out to determine the osteoconductive potential of our PCL core (Figure 3). Conclusion: In conclusion, PEA functionalized mimetic periosteum show an unpreceded increase in bone healing, greatly enhancing rhBMP-2 effects

    Mechanical barriers and transforming growth factor beta inhibitor on epidural fibrosis in a rabbit laminectomy model

    Get PDF
    Abstract Background TGF-β has been described as a mediator of fibrosis and scarring. Several studies achieved reduction in experimental scarring through the inhibition of TGF-β. Fibroblasts have been defined as the cell population originating fibrosis, blocking fibroblast invasion may impair epidural fibrosis appearance. For this purpose, biocompatible materials used as mechanical barriers and a TGF-β inhibitor peptide were evaluated in the reduction of epidural fibrosis. Methods A L6 laminectomy was performed in 40 New Zealand white rabbits. Divided into four groups, each rabbit was assigned to receive either collagen sponge scaffold (CS group), gelatin-based gel (GCP group), P144® (iTGFβ group), or left untreated (control group). Four weeks after surgery, cell density, collagen content, and new bone formation of the scar area were determined by histomorphometry. Two experienced pathologists scored dura mater adhesion, scar density, and inflammatory infiltrate in a blinded manner. Results In all groups, laminectomy site was filled with fibrous tissue and the dura mater presented adhesions. Only GCP group presented a significant reduction in collagen content and scar density. Conclusion GCP treatment reduces epidural fibrosis although did not prevent dura mater adhesion completely

    Generation of four Isl1 reporter iPSC lines from cardiac and tail-tip fibroblasts derived from Ai6IslCre mouse

    No full text
    Islet-1 (Isl1) is a transcription factor essential for life expressed in specific cells with different developmental origins. We have generated iPSC lines from fibroblasts of the transgenic Ai6 x Isl1-Cre (Ai6IslCre) mouse. Here we describe the complete characterization of four iPSC lines: ATCi-Ai6IslCre10, ATCi-Ai6IslCre35, ATCi-Ai6IslCre74 and ATCi-Ai6IslCre80

    Additional file 1: of Mechanical barriers and transforming growth factor beta inhibitor on epidural fibrosis in a rabbit laminectomy model

    No full text
    Figure S1. Graphical representation of the scores of the second pathologist. Scar density, Kruskal-Wallis test p = 0.0684. **, p < 0.01. Dura mater adhesion, Kruskal-Wallis test p = 0.0978. Inflammatory infiltrate, Kruskal-Wallis test p = 0.0058. *, p < 0.05. (TIFF 1203 kb

    Anisotropic cryostructured collagen scaffolds for efficient delivery of RhBMP−2 and enhanced bone regeneration

    No full text
    In the treatment of bone non-unions, an alternative to bone autografts is the use of bone morphogenetic proteins (BMPs), e.g., BMP–2, BMP–7, with powerful osteoinductive and osteogenic properties. In clinical settings, these osteogenic factors are applied using absorbable collagen sponges for local controlled delivery. Major side effects of this strategy are derived from the supraphysiological doses of BMPs needed, which may induce ectopic bone formation, chronic inflammation, and excessive bone resorption. In order to increase the efficiency of the delivered BMPs, we designed cryostructured collagen scaffolds functionalized with hydroxyapatite, mimicking the structure of cortical bone (aligned porosity, anisotropic) or trabecular bone (random distributed porosity, isotropic). We hypothesize that an anisotropic structure would enhance the osteoconductive properties of the scaffolds by increasing the regenerative performance of the provided rhBMP–2. In vitro, both scaffolds presented similar mechanical properties, rhBMP–2 retention and delivery capacity, as well as scaffold degradation time. In vivo, anisotropic scaffolds demonstrated better bone regeneration capabilities in a rat femoral critical-size defect model by increasing the defect bridging. In conclusion, anisotropic cryostructured collagen scaffolds improve bone regeneration by increasing the efficiency of rhBMP–2 mediated bone healing

    An engineered periosteum for efficient delivery of rhBMP-2 and mesenchymal progenitor cells during bone regeneration

    Get PDF
    Abstract During bone regeneration, the periosteum acts as a carrier for key regenerative cues, delivering osteochondroprogenitor cells and crucial growth factors to the injured bone. We developed a biocompatible, 3D polycaprolactone (PCL) melt electro-written membrane to act as a mimetic periosteum. Poly (ethyl acrylate) coating of the PCL membrane allowed functionalization, mediated by fibronectin and low dose recombinant human BMP-2 (rhBMP-2) (10-25 μg/ml), resulting in efficient, sustained osteoinduction in vitro. In vivo, rhBMP-2 functionalized mimetic periosteum demonstrated regenerative potential in the treatment of rat critical-size femoral defects with highly efficient healing and functional recovery (80%-93%). Mimetic periosteum has also proven to be efficient for cell delivery, as observed through the migration of transplanted periosteum-derived mesenchymal cells to the bone defect and their survival. Ultimately, mimetic periosteum demonstrated its ability to deliver key stem cells and morphogens to an injured site, exposing a therapeutic and translational potential in vivo when combined with unprecedentedly low rhBMP-2 doses

    An engineered periosteum for efficient delivery of rhBMP-2 and mesenchymal progenitor cells during bone regeneration

    No full text
    During bone regeneration, the periosteum acts as a carrier for key regenerative cues, delivering osteochondroprogenitor cells and crucial growth factors to the injured bone. We developed a biocompatible, 3D polycaprolactone (PCL) melt electro-written membrane to act as a mimetic periosteum. Poly (ethyl acrylate) coating of the PCL membrane allowed functionalization, mediated by fibronectin and low dose recombinant human BMP-2 (rhBMP-2) (10-25 mu g/ml), resulting in efficient, sustained osteoinduction in vitro. In vivo, rhBMP-2 functionalized mimetic periosteum demonstrated regenerative potential in the treatment of rat critical-size femoral defects with highly efficient healing and functional recovery (80%-93%). Mimetic periosteum has also proven to be efficient for cell delivery, as observed through the migration of transplanted periosteum-derived mesenchymal cells to the bone defect and their survival. Ultimately, mimetic periosteum demonstrated its ability to deliver key stem cells and morphogens to an injured site, exposing a therapeutic and translational potential in vivo when combined with unprecedentedly low rhBMP-2 doses
    corecore