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Abstract

Background: TGF-3 has been described as a mediator of fibrosis and scarring. Several studies achieved reduction
in experimental scarring through the inhibition of TGF-f. Fibroblasts have been defined as the cell population
originating fibrosis, blocking fibroblast invasion may impair epidural fibrosis appearance. For this purpose,
biocompatible materials used as mechanical barriers and a TGF- inhibitor peptide were evaluated in the reduction

of epidural fibrosis.

Methods: A L6 laminectomy was performed in 40 New Zealand white rabbits. Divided into four groups, each
rabbit was assigned to receive either collagen sponge scaffold (CS group), gelatin-based gel (GCP group), P144°®
(iTGFB group), or left untreated (control group). Four weeks after surgery, cell density, collagen content, and new
bone formation of the scar area were determined by histomorphometry. Two experienced pathologists scored dura
mater adhesion, scar density, and inflammatory infiltrate in a blinded manner.

Results: In all groups, laminectomy site was filled with fibrous tissue and the dura mater presented adhesions. Only
GCP group presented a significant reduction in collagen content and scar density.

Conclusion: GCP treatment reduces epidural fibrosis although did not prevent dura mater adhesion completely.
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Background
After tissue injury, the tissue repair process may derive in
the overproduction and deposition of extracellular matrix
components forming a scar. When the scar is formed over
the dura mater, it receives the name of epidural fibrosis [1].
Its presence makes reoperation much more difficult,
increasing surgery time and risks of dural tears and nerve
root injury [2]. This is one common problem associated
with spinal surgery considering that the incidence of
lumbar spine reoperation surgery ranges from 4 to 19% [3].
To prevent epidural fibrosis, interposition of a free fat
graft is a common procedure in clinical practice, although
it has the potential to cause nerve root or spinal cord
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compression [4]. In addition, different mechanical barriers
and anti-inflammatory therapies have been used for the
prevention of epidural fibrosis, with variable or limited
clinical success [5, 6]. An ideal material to prevent epidural
fibrosis should be able to minimize the risks of neurologic
compression and not interfere in the healing of the
surrounding tissue. It also should be biocompatible in order to
minimize foreign body reaction and inflammatory response.

The transforming growth factor B (TGF-p) initiates a
wide range of effects in different cells and tissues in the
body [7]. Enhanced expression of TGF-B1 has been well
demonstrated in scar tissue, especially in systemic
sclerosis. Increased amounts of TGF-B1 are found in
wounds that heal by scar formation as opposed to tissue
regeneration. This has led to clinical efforts to block scar
formation with antibodies and small molecules directed
against TGF-B1 [8-10].

In order to evaluate the effect of TGF-B1 in epidural
fibrosis, we applied an anti TGF-f1 synthetic peptide,
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P144° (Digna Biotech S.L., Madrid, Spain) to a rabbit spinal
surgery model. P144 showed fibrosis reduction when used
in animal models of liver fibrosis, bleomycin-induced skin
sclerosis, and silicone periprosthetic fibrosis [11].

Adcon L° (Gliatech Inc., Cleveland, OH, USA) and
DuraGen® (Integra Neurosciences, Plainsboro, NJ) have
shown good results in preventing epidural fibrosis in other
studies [12]. Adcon L°, an absorbable gel matrix made of
gelatin and a carbohydrate polymer (GCP), functions as a
barrier to fibroblast disappearing in 3 weeks [13].
DuraGen® a collagen sponge (CS), commonly used as a
dural graft, allows infiltration of fibroblasts, which use the
collagen matrix pores as a scaffold to lay down new
collagen, disappearing in 6—8 weeks [14].

We developed a rabbit model of epidural fibrosis after
laminectomy and assessed the effect of barrier materials
Adcon L* and DuraGen® as well as a TGF-P1 blocking
peptide P144° on epidural fibrosis appearance.

Methods

Animals

All procedures performed in studies involving animals were

in accordance with the ethical standards of the University of

Navarra and approved by the Experimental Animal Ethics

Commiittee of the University of Navarra (CEEA 131/10).
Forty New Zealand white male rabbits (4—5 kg body

weight), undergoing a L6 laminectomy, were used in this

study. Four experimental groups were created:

Control group. The laminectomy site was flushed with
saline solution (# = 10).

GCP group. Adcon L° was placed in the laminectomy
site covering the laminectomy defect uniformly (z = 10).
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CS group. A Duragen® sheet was cut to fit the laminectomy
defect and placed in the laminectomy site (1 = 10).

iTGEP group. P144° peptide (Polypeptide Group,
Strasbourg, France), derived from the sequence of the type
III receptor of the human TGF-f (encompassing amino
acids 730-743, SwissProt accession number Q03167), was
placed in the laminectomy site covering the laminectomy
defect uniformly (# = 10). The cytotoxicity of iTGEp has
been evaluated in previous animal studies with no
evidence of cytotoxicity reported [15].

Any rabbit with complications due to the anesthesia or
the laminectomy (e.g., dural tear, neural compression) were
classified as non-eligible and excluded from the study.

Surgical procedure

Animals received a complete laminectomy of L6 up to the
liganmentum flavum between L6 and L7 and from one pedicle
to the other (Fig. 1a). All animals fasted during the 12 h
previous to surgery. Animals were sedated with an intramus-
cular injection of medetomidine (0.15 mg/kg, Orion Pharma
Espoo, Finland) and ketamine (10 mg/kg, Imalgene 1000;
Merial, Lyon, France). Anesthesia was induced with an
intravenous dose of propofol 2—8 mg/kg (Braun, Melsungen,
Germany) and maintained with sevoflurane 1.5-3% (Abbvie,
llinois, USA) throughout the procedure. Under anesthesia,
animals were placed prone on a heating pad on the operating
table. The lumbosacral area was trimmed with an electric
clipper and prepped with the antiseptic povidone iodine. L6
was identified by palpation and an approximated 7 cm
midline incision was centered over the spinous process. The
osseous plane was exposed dissecting the paraspinal
musculature, the ligamentum flavum between L5 and L6
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Fig. 1 a Laminectomy of L6. b Vertebra harvesting. Left panel, ventral view; right panel, dorsal view. ¢ Top panel, intact vertebrae. Middle panels,
histological view of the fibrotic tissue covering the laminectomy area. Lower panel, magnification of the dural adhesion. Open box, region of the
dural adhesion analyzed
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was reached and incised, a defect of approximately 20 mm
long and 7 mm wide was then created using a 1-mm
Kerrison rongeur, 45° angle, performing a complete
laminectomy of L6 up to the ligamentum flavum between L6
and L7 and from one pedicle to the other (Fig. la). After
treatment was applied, the fascia was closed with a 2/0
polyglactin suture (Ethicon, USA). Antibiotic was adminis-
tered (penicillin/streptomycin 0.1 ml/kg/24 h) (Virbac,
Esplugues de Llobregat, Spain) during 7 days. All rabbits
were housed in separate cages with free access to food and
water without immobilization. At 4 weeks after surgery, the
rabbits were sacrificed.

All rabbits were housed in separate cages with free
access to food and water without immobilization. The
rabbits were sacrificed 4 weeks after surgery.

Histology and histomorphometric analysis

For histological evaluation, the spines were harvested
(Fig. 1b), fixed in 4% formalin for 1 week, and decalcified
in decalcification solution (10% EDTA, 7.5% PVP,
10 mM TrisHCI pH 6.95) during 8 weeks, dehydrated in
a graded ethanol, and embedded in paraffin.

Serial sections, 4 pum thick, were obtained from the mid-
section and from both ends of each treated level and stained
with Hematoxylin and Eosin (H&E), Masson’s Trichrome,
and Sirius Red dye to evaluate the scar tissue (Fig. 1c).

Digital images were acquired with a Zeiss Axiocam
ICc3 camera (Plan-Neofluar objective with 0.50 NA)
with an Axioimager M1 microscope (Carl Zeiss,
Oberkochen, Germany).

A histomorphometric analysis was carried out quanti-
fying cell density, new bone formation, and collagen
content of the epidural scar tissue.

For cell density, the cell count was performed as cells
per square millimeter using Image] in 15 fields per slide, 3
slides per animal. A mean number was obtained for each
rabbit. Similarly, collagen content was quantified as
percent of Sirius Red positive staining in the corresponding
fields and mean number acquired. New bone formation
area and distance covering the laminectomy expressed as
area in square millimeter and distance in millimeter
respectively from Masson’s Thrichrome stained sections.

Two experimented pathologists graded and scored
scar density, epidural adherence, and inflammatory cell
infiltrate in a blinded manner. The extension of the
adhesion between dura mater and fibrous tissue was
graded according to the classification described by He et
al. [16]. Density of the adhesion was graded according to
the classification used by Preul et al. [17]. The inflamma-
tory cell infiltrate was graded with a semi quantitative
scale ranging from O (absence of inflammatory cell
infiltrate), 1 (less than 30% of the area is occupied by
inflammatory cell infiltrate assessed at a x 100 magnifica-
tion), 2 (moderate inflammatory cell infiltrate distributed

Page 3 of 7

through 30-70% of the scar tissue at a x 100 magnifica-
tion), and 3 (severe inflammatory cell infiltrate distributed
in over 70% of the scar tissue evident at a x 40 magni-
fication). Each pathologist acquired three independent
readings; the median of each pathologist reading was used
to calculate the intra-class correlation.

Statistical analysis
For all the statistical analysis, GraphPad Prism 5.0 soft-
ware was used. The level of statistical significance was set
at p <0.05. Normality of continues variables were tested
using Kolmogorov-Smirnov tests. Graphical data is repre-
sented as a scattered dot plot and mean value. In the text,
data is shown as mean+SD. A one-way ANOVA was
used to analyze the treatment groups for differences in the
mean of cell density. Dunnett’s multiple comparison test
was employed to detect differences in cell density between
each group with the control group. The Kruskal-Wallis
test was used to analyze fibrous adherence, scar density,
inflammatory infiltrate, collagen content, and new bone
formation. Dunn’s multiple comparison test was used to
compare the differences between each treatment group
and the control group.

Intra-class agreement for all the histological scorings
was analyzed using weighted Kappa coefficient.

Finally, the correlation between the % collagen and cell
count was evaluated with the Spearman coefficient.

Results

To determine the effect of the different treatments in
epidural fibrosis, two experimented pathologists scored
scar density, dura mater adhesion, and inflammatory cell
infiltrate. The control and iTGFP groups presented a
dense, vascularized connective tissue filling the defect
resulting in a similar mean value for the scar density
score (2.400 £0.699). In the CS group, the defect was
filled with a less densely organized tissue and a
significant reduction in the scar density score (1.750 + 0.463,
p =0.0423). Finally, the GCP group showed the lowest scar
density score, which was statistically significant when com-
pared with the control group (1.333 +0.441, p=0.0048)
(Fig. 2a, Additional file 1: Figure S1). Intra-class agreement
between observers for the scar density was 74.6% (weighted
Kappa = 0.54, p < 0.01).

When comparing the adhesion degree between the
dura mater and the scar tissue, we found a reduction in
the score of the GCP group but without statistical
significance (1.222 +0.441) when compared to the
control group (1.900 + 0.876, p = 0.0725). CS and iTGEp
groups showed no significant differences when com-
pared with control group (1.750 + 0.886, p = 0.7391 and
2.100 £ 0.567, p = 0.5651 respectively) (Fig. 2b, Additional file 1:
Figure S1). Intra-class agreement between observers
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Fig. 2 a Masson’s Trichrome staining evaluating scar density. Kruskal-Wallis test p=0.0031; **p < 0.01. b Masson’s Trichrome staining evaluating dura mater
adhesion. Kruskal-Wallis test p = 0.0586. ¢ H&E staining evaluating inflammatory infiltrate. Kurskal-Wallis test p = 0.0068; *p < 0.05; **p < 0.01
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for the adhesion was calculated as 74.6% (weighted
Kappa =0.1, p =0.174).

There was a significant higher score of inflammatory
cell infiltrate in the iTGFp (1.500 + 0.527) and CS (1.625
+0.517) groups in comparison with the control group
(1.000 + 0.000) (p=0.0119 and p=0.0059 respectively).
GCP group (1.111+0.333) did not differ significantly
from the control group (p = 0.1930) (Fig. 2c, Additional file 1:
Figure S1). Intra-class agreement between observers for the
inflammatory infiltrate was 85.7% (weighted Kappa = 0.403,
p<0.01).

The histomorphometric analysis showed no signifi-
cant differences in the cell density count and new bone
formation when comparing the treatment groups CS,
iTGEFp, and GCP, with the Control group (Table 1).

Table 1 Histomorphometric analysis of epidural fibrosis

Cell density New bone Collagen

(cells/area) (mm?) content (%)
Control 8476 + 3333 8.10 £ 536 6161 £ 11.18
iTGFR 1039.0 + 2340 753 +£5.14 56.37 £ 1036
(&) 982.8 + 5024 8.15 £ 5.16 5131 £ 1364
GPC 486.7 £ 197.8 501 £5.14 28.55 + 12.23°

Kruskal-Wallis test for collagen content p = 0.0002
%p < 0.0001 when compared with the control group

The collagen content was assessed by Sirius red
staining. Here we did not find significant differences in
the percentage of Sirius Red stained area filling the sur-
gical site for the iTGFP or CS treatment groups when
compared to the control group (p = 0.6607 and p = 0.0545
respectively). On the other hand, a statistically significant
reduction in collagen density was found in the GCP group
when compared with the control group (p<0.0001)
(Table 1, Fig. 3).

Finally, collagen and cell content showed a significant
correlation (Spearman r = 0.47, CI 0.17-0.70, p = 0.003).

Discussion

We performed a histomorphometric study of the
epidural fibrosis originated after applying different treat-
ments in the epidural space in a rabbit laminectomy
model. Histopathologic evaluation revealed that laminec-
tomy caused significant epidural fibrosis 4 weeks after
surgery. In our model, epidural fibrosis resulted in
increased tissue cellularity and abundant extracellular
matrix deposition. We found that collagen and cell
content showed a significant correlation in contrast with
the given definition of epidural fibrosis previously
described as a low cellularity tissue with excessive
deposition of extracellular matrix components [18].
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Fig. 3 Sirius Red staining was used for histomorphometric quantification of collagen content
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Epidural fibrosis has been evaluated in many different
animal models, being rats and rabbits the most frequently
used animals in laminectomy models. Rabbits heal faster
than humans, and complete closure of the laminectomy
defect has been described in previous studies [3]. Using
young rabbits (up to 3 kg weight), we observed complete
closure of the laminectomy as soon as 4 weeks after
surgery (data not shown). On the other hand, complete
closure was not observed in our study with older rabbits
weighing over 4 kg. New bone formation occurred at the
edges of the laminectomy in all groups, and no statistical
significant differences were observed.

Scoring and histomorphometric analysis indicate that
GCP group presented less scar density, inflammatory
infiltrate, dura mater adhesion, and low collagen content,
suggesting that fibroblast infiltration is a key factor in the
development of epidural scar. Although it has been
observed that GCP scaffolds may inhibit dural healing and
facilitate cerebral spinal fluid leakages from microscopic
durotomies, and when mixed with autogenous bone graft
could decrease bone formation, our results with GCP
scaffolds are consistent with other reports on reducing
peridural adhesion and lower scar density [19].

Much interest has been generated by the observation that
increased amounts of TGF-B1 are found in wounds that
heal by scar formation as opposed to tissue regeneration.
This finding has led to clinical efforts to block scar
formation with antibodies or small molecules directed
against TGF-3 and other pro-inflammatory mediators [20].
Ferguson et al. showed that embryonic wounds that heal
without a scar have low levels of TGF-1 and TGF-f2,
low levels of platelet-derived growth factor, and high
levels of TGF-f3. In addition, they experimentally
mimic scar-free embryonic profile in mice, rats and pigs
by neutralizing PDGE, TGF-B1, and TGF-B2 or adding
exogenous TGF-f3 [20].

The treatment based in iTGFB showed no significant
differences in cell density and adhesion scores, as well as
histomorphometric values to the control group. Although
a higher score of inflammatory cell infiltrate was observed
in comparison with the control group, we were not able to
find any explanation for this finding because iTGFp was
delivered without a scaffold. This is the first study of the ef-
fect of iTGFP on postsurgical scarring in the epidural
space. All skin and muscle incisions healed within 1-week
post operation, verifying that the iTGFP gel did not cause
significant adverse effects, although the safety of iTGEp gel
applications requires further investigations. The safety pro-
file of the iTGFp appears favorable due to its minimal local
tissue response and lack of neurological deficits. Overall,
our results differ to those reported in other tissues, which
showed decreased scar tissue after iTGFp treatment [11].

Collagen sponge scaffolds are commonly used as a
dural substitute and its efficacy in preventing epidural
fibrosis has been reported in a few studies at 8 and
20 weeks after surgery in a rabbit model [21]. In our
hands, a less densely organized tissue filled the laminec-
tomy site and a reduction in the scar density score was
observed in comparison with the control group,
although it did not reach statistical significance. Adhesion
degree, cell density count, and collagen content showed
no significant differences when compared to the control
group. A significant higher score of inflammatory cell
infiltrate in the CS group could be explained because the
full resorption of the collagen matrix occurs 6—-8 weeks
after surgery; therefore, there might be inflammatory cell
invasion due to a foreign body reaction.

Conclusions

We demonstrated that peridural scarring formed in our
animal model after laminectomy. GCP scaffold was able
to reduce both collagenous tissue and cellularity in the
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epidural space after laminectomy. The other treatments
(CS and iTGEp) did not show efficacy in reducing the
occurrence of epidural fibrosis or adhesion.

The data from the present study indicate that iTGFp
administrated in this manner and at this dosage is not
capable of attenuating epidural fibrosis in a rabbit spinal
surgery model.

Additional file

Additional file 1: Figure S1. Graphical representation of the scores of the
second pathologist. Scar density, Kruskal-Wallis test p = 0.0684. **, p < 0.01.
Dura mater adhesion, Kruskal-Wallis test p = 0.0978. Inflammatory infiltrate,
Kruskal-Wallis test p = 0.0058. *, p < 0.05. (TIFF 1203 kb)
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