303 research outputs found

    EEG Sleep Slow-Wave Activity as a Mirror of Cortical Maturation

    Get PDF
    Deep (slow wave) sleep shows extensive maturational changes from childhood through adolescence, which is reflected in a decrease of sleep depth measured as the activity of electroencephalographic (EEG) slow waves. This decrease in sleep depth is paralleled by massive synaptic remodeling during adolescence as observed in anatomical studies, which supports the notion that adolescence represents a sensitive period for cortical maturation. To assess the relationship between slow-wave activity (SWA) and cortical maturation, we acquired sleep EEG and magnetic resonance imaging data in children and adolescents between 8 and 19 years. We observed a tight relationship between sleep SWA and a variety of indexes of cortical maturation derived from magnetic resonance (MR) images. Specifically, gray matter volumes in regions correlating positively with the activity of slow waves largely overlapped with brain areas exhibiting an age-dependent decrease in gray matter. The positive relationship between SWA and cortical gray matter was present also for power in other frequency ranges (theta, alpha, sigma, and beta) and other vigilance states (theta during rapid eye movement sleep). Our findings indicate a strong relationship between sleep EEG activity and cortical maturation. We propose that in particular, sleep SWA represents a good marker for structural changes in neuronal networks reflecting cortical maturation during adolescenc

    LRX Proteins play a crucial role in pollen grain and pollen tube cell wall development

    Get PDF
    Leucine-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal leucine-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis thaliana. Mutations in multiple pollen-expressed lrx genes causes severe defects in pollen germination and pollen tube (PT) growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the PT growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modelling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics

    Sleep EEG slow-wave activity in medicated and unmedicated children and adolescents with attention-deficit/hyperactivity disorder

    Full text link
    Slow waves (1-4.5 Hz) are the most characteristic oscillations of deep non-rapid eye movement sleep. The EEG power in this frequency range (slow-wave activity, SWA) parallels changes in cortical connectivity (i.e., synaptic density) during development. In patients with attention-deficit/hyperactivity disorder (ADHD), prefrontal cortical development was shown to be delayed and global gray matter volumes to be smaller compared to healthy controls. Using data of all-night recordings assessed with high-density sleep EEG of 50 children and adolescents with ADHD (mean age: 12.2 years, range: 8-16 years, 13 female) and 86 age- and sex-matched healthy controls (mean age: 12.2 years, range: 8-16 years, 23 female), we investigated if ADHD patients differ in the level of SWA. Furthermore, we examined the effect of stimulant medication. ADHD patients showed a reduction in SWA across the whole brain (-20.5%) compared to healthy controls. A subgroup analysis revealed that this decrease was not significant in patients who were taking stimulant medication on a regular basis at the time of their participation in the study. Assuming that SWA directly reflects synaptic density, the present findings are in line with previous data of neuroimaging studies showing smaller gray matter volumes in ADHD patients and its normalization with stimulant medication

    Amino acid availability in ruminants of cereals and cereal co-produtcs

    Full text link
    [EN] BACKGROUND: Microbial correctedin situ estimates of the ruminal undegraded fraction (RU) and intestinal effective digestibility (IED) of amino acids (AA), except tryptophan, of rye, wheat and corn grains, wheat bran, wheat and barley distilled dried grains and corn gluten feed were measured on three rumen- and duodenum-cannulated wethers using 15N-labelling techniques and considering ruminal rates of particle comminution and outflow. RESULTS: The lack of microbial correction led to overestimations of the intestinal digested fraction that rose with the increase in ruminal degradability. Thus these overestimations varied widely among feeds (from 4.3 to 32.1% for total analysed AA) and among AA. Digestion led to large changes in the AA supply that were greater in the rumen than in the intestine. The impact of these changes on the protein value is conditioned by the magnitude of the undegraded protein fraction. CONCLUSION: Microbial contamination taking place in the rumen and changes in the AA supply with digestion should be considered to attain accurate estimates of AA digestion. Globally, digestion improved the AA supply in rye, wheat and wheat distilled dried grain and decreased it in corn and corn gluten feed by reducing the supply of valine and basic AA, especially lysine. © 2014 Society of Chemical IndustryGonzález, J.; Arroyo, JM.; Guevara-González, JA.; Mouhbi, R.; Piquer Querol, O.; Moya, V. (2014). Amino acid availability in ruminants of cereals and cereal co-produtcs. Journal of the Science of Food and Agriculture. 94(12):2448-2455. doi:10.1002/jsfa.6579S24482455941

    How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep.

    Get PDF
    Slow waves, the hallmarks of non-rapid eye-movement (NREM) sleep, are thought to reflect maturational changes that occur in the cerebral cortex throughout childhood and adolescence. Recent work in adults has revealed evidence for two distinct synchronization processes involved in the generation of slow waves, which sequentially come into play in the transition to sleep. In order to understand how these two processes are affected by developmental changes, we compared slow waves between children and young adults in the falling asleep period. The sleep onset period (starting 30s before end of alpha activity and ending at the first slow wave sequence) was extracted from 72 sleep onset high-density EEG recordings (128 electrodes) of 49 healthy subjects (age 8-25). Using an automatic slow wave detection algorithm, the number, amplitude and slope of slow waves were analyzed and compared between children (age 8-11) and young adults (age 20-25). Slow wave number and amplitude increased linearly in the falling asleep period in children, while in young adults, isolated high-amplitude slow waves (type I) dominated initially and numerous smaller slow waves (type II) with progressively increasing amplitude occurred later. Compared to young adults, children displayed faster increases in slow wave amplitude and number across the falling asleep period in central and posterior brain regions, respectively, and also showed larger slow waves during wakefulness immediately prior to sleep. Children do not display the two temporally dissociated slow wave synchronization processes in the falling asleep period observed in adults, suggesting that maturational factors underlie the temporal segregation of these two processes. Our findings provide novel perspectives for studying how sleep-related behaviors and dreaming differ between children and adults

    The Swiss Primary Hypersomnolence and Narcolepsy Cohort study (SPHYNCS): Study protocol for a prospective, multicentre cohort observational study

    Get PDF
    Narcolepsy type 1 (NT1) is a disorder with well-established markers and a suspected autoimmune aetiology. Conversely, the narcoleptic borderland (NBL) disorders, including narcolepsy type 2, idiopathic hypersomnia, insufficient sleep syndrome and hypersomnia associated with a psychiatric disorder, lack well-defined markers and remain controversial in terms of aetiology, diagnosis and management. The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study (SPHYNCS) is a comprehensive multicentre cohort study, which will investigate the clinical picture, pathophysiology and long-term course of NT1 and the NBL. The primary aim is to validate new and reappraise well-known markers for the characterization of the NBL, facilitating the diagnostic process. Seven Swiss sleep centres, belonging to the Swiss Narcolepsy Network (SNaNe), joined the study and will prospectively enrol over 500 patients with recent onset of excessive daytime sleepiness (EDS), hypersomnia or a suspected central disorder of hypersomnolence (CDH) during a 3-year recruitment phase. Healthy controls and patients with EDS due to severe sleep-disordered breathing, improving after therapy, will represent two control groups of over 50 patients each. Clinical and electrophysiological (polysomnography, multiple sleep latency test, maintenance of wakefulness test) information, and information on psychomotor vigilance and a sustained attention to response task, actigraphy and wearable devices (long-term monitoring), and responses to questionnaires will be collected at baseline and after 6, 12, 24 and 36 months. Potential disease markers will be searched for in blood, cerebrospinal fluid and stool. Analyses will include quantitative hypocretin measurements, proteomics/peptidomics, and immunological, genetic and microbiota studies. SPHYNCS will increase our understanding of CDH and the relationship between NT1 and the NBL. The identification of new disease markers is expected to lead to better and earlier diagnosis, better prognosis and personalized management of CDH
    corecore