767 research outputs found

    Tents, Chairs, Tacos, Kites, and Rods: Shapes and Plasmonic Properties of Singly Twinned Magnesium Nanoparticles

    Get PDF
    Nanostructures of some metals can sustain light-driven electron oscillations called localized surface plasmon resonances, or LSPRs, that give rise to absorption, scattering, and local electric field enhancement. Their resonant frequency is dictated by the nanoparticle (NP) shape and size, fueling much research geared toward discovery and control of new structures. LSPR properties also depend on composition; traditional, rare, and expensive noble metals (Ag, Au) are increasingly eclipsed by earth-abundant alternatives, with Mg being an exciting candidate capable of sustaining resonances across the ultraviolet, visible, and near-infrared spectral ranges. Here, we report numerical predictions and experimental verifications of a set of shapes based on Mg NPs displaying various twinning patterns including (101Ì…1), (101Ì…2), (101Ì…3), and (112Ì…1), that create tent-, chair-, taco-, and kite-shaped NPs, respectively. These are strikingly different from what is obtained for typical plasmonic metals because Mg crystallizes in a hexagonal close packed structure, as opposed to the cubic Al, Cu, Ag, and Au. A numerical survey of the optical response of the various structures, as well as the effect of size and aspect ratio, reveals their rich array of resonances, which are supported by single-particle optical scattering experiments. Further, corresponding numerical and experimental studies of the near-field plasmon distribution via scanning transmission electron microscopy electron-energy loss spectroscopy unravels a mode nature and distribution that are unlike those of either hexagonal plates or cylindrical rods. These NPs, made from earth-abundant Mg, provide interesting ways to control light at the nanoscale across the ultraviolet, visible, and near-infrared spectral ranges

    Eigenmode Tomography of Surface Charge Oscillations of Plasmonic Nanoparticles by Electron Energy Loss Spectroscopy

    Get PDF
    Plasmonic devices designed in three dimensions enable careful tuning of optical responses for control of complex electromagnetic interactions on the nanoscale. Probing the fundamental characteristics of the constituent nanoparticle building blocks is, however, often constrained by diffraction-limited spatial resolution in optical spectroscopy. Electron microscopy techniques, including electron energy loss spectroscopy (EELS), have recently been developed to image surface plasmon resonances qualitatively at the nanoscale in three dimensions using tomographic reconstruction techniques. Here, we present an experimental realization of a distinct method that uses direct analysis of modal surface charge distributions to reconstruct quantitatively the three-dimensional eigenmodes of a silver right bipyramid on a metal oxide substrate. This eigenmode tomography removes ambiguity in two-dimensional imaging of spatially-localized plasmonic resonances, reveals substrate-induced mode degeneracy breaking in the bipyramid, and enables EELS for the analysis not of a particular electron-induced response but of the underlying geometric modes characteristic of particle surface plasmons.S.M.C. acknowledges support of a Gates Cambridge Scholarship. E.R. acknowledges support from the Royal Society's Newton International Fellowship scheme and a Trinity Hall Research Fellowship. We thank Ben Knappet for assistance with the synthesis of the silver bipyramids. We thank F.J. de la Peña for helpful discussions on the use of HYPERSPY. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (No. FP7/2007-2013)/ERC Grant Agreement No. 291522-3DIMAGE and the European Union's Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2)This is the final version of the article. It was first available from ACS via http://dx.doi.org/10.1021/acsphotonics.5b0042

    To sink, swim, twin, or nucleate: A critical appraisal of crystal aggregation processes

    Get PDF
    Crystal aggregates in igneous rocks have been variously ascribed to growth processes (e.g., twinning, heterogeneous nucleation, epitaxial growth, dendritic growth), or dynamical processes (e.g., synneusis, accumulation during settling). We tested these hypotheses by quantifying the relative orientation of adjacent crystals using electron backscatter diffraction. Both olivine aggregates from Kīlauea volcano (Hawaiʻi, USA) and chromite aggregates from the Bushveld Complex (South Africa) show diverse attachment geometries inconsistent with growth processes. Near-random attachments in chromite aggregates are consistent with accumulation by settling of individual crystals. Attachment geometries and prominent geochemical differences across grain boundaries in olivine aggregates are indicative of synneusis

    Does Alendronate reduce the risk of fracture in men? A meta-analysis incorporating prior knowledge of anti-fracture efficacy in women

    Get PDF
    BACKGROUND: Alendronate has been found to reduce the risk of fractures in postmenopausal women as demonstrated in multiple randomized controlled trials enrolling thousands of women. Yet there is a paucity of such randomized controlled trials in osteoporotic men. Our objective was to systematically review the anti-fracture efficacy of alendronate in men with low bone mass or with a history of prevalent fracture(s) and incorporate prior knowledge of alendronate efficacy in women in the analysis. METHODS: We examined randomized controlled trials in men comparing the anti-fracture efficacy of alendronate to placebo or calcium or vitamin D, or any combination of these. Studies of men with secondary causes of osteoporosis other than hypogonadism were excluded. We searched the following electronic databases (without language restrictions) for potentially relevant citations: Medline, Medline in Process (1966-May 24/2004), and Embase (1996–2004). We also contacted the manufacturer of the drug in search of other relevant trials. Two reviewers independently identified two trials (including 375 men), which met all inclusion criteria. Data were abstracted by one reviewer and checked by another. Results of the male trials were pooled using Bayesian random effects models, incorporating prior information of anti-fracture efficacy from meta-analyses of women. RESULTS: The odds ratios of incident fractures in men (with 95% credibility intervals) with alendronate (10 mg daily) were: vertebral fractures, 0.44 (0.23, 0.83) and non-vertebral fractures, 0.60 (0.29, 1.44). CONCLUSION: In conclusion, alendronate decreases the risk of vertebral fractures in men at risk. There is currently insufficient evidence of a statistically significant reduction of non-vertebral fractures, but the paucity of trials in men limit the statistical power to detect such an effect

    Electric-field-induced alignment of electrically neutral disk-like particles: modelling and calculation

    Get PDF
    This work reveals a torque from electric field to electrically neutral flakes that are suspended in a higher electrical conductive matrix. The torque tends to rotate the particles toward an orientation with its long axis parallel to the electric current flow. The alignment enables the anisotropic properties of tiny particles to integrate together and generate desirable macroscale anisotropic properties. The torque was obtained from thermodynamic calculation of electric current free energy at various microstructure configurations. It is significant even when the electrical potential gradient becomes as low as 100 v/m. The changes of electrical, electroplastic and thermal properties during particles alignment were discussed

    Singular charge fluctuations at a magnetic quantum critical point

    Get PDF
    Strange metal behavior is ubiquitous in correlated materials, ranging from cuprate superconductors to bilayer graphene, and may arise from physics beyond the quantum fluctuations of a Landau order parameter. In quantum-critical heavy-fermion antiferromagnets, such physics may be realized as critical Kondo entanglement of spin and charge and probed with optical conductivity. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy–grown thin films of YbRh₂Si₂, a model strange-metal compound. We observed frequency over temperature scaling of the optical conductivity as a hallmark of beyond-Landau quantum criticality. Our discovery suggests that critical charge fluctuations play a central role in the strange metal behavior, elucidating one of the long-standing mysteries of correlated quantum matter

    Singular charge fluctuations at a magnetic quantum critical point

    Get PDF
    Strange metal behavior is ubiquitous in correlated materials, ranging from cuprate superconductors to bilayer graphene, and may arise from physics beyond the quantum fluctuations of a Landau order parameter. In quantum-critical heavy-fermion antiferromagnets, such physics may be realized as critical Kondo entanglement of spin and charge and probed with optical conductivity. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy–grown thin films of YbRh2Si2, a model strange-metal compound. We observed frequency over temperature scaling of the optical conductivity as a hallmark of beyond-Landau quantum criticality. Our discovery suggests that critical charge fluctuations play a central role in the strange metal behavior, elucidating one of the long-standing mysteries of correlated quantum matter.Financial support for this work was provided by the European Research Council (ERC Advanced Grant 227378), the U.S. Army Research Office (ARO W911NF-14-1-0496), the Austrian Science Fund (FWF W1243, P29279-N27, and P29296-N27), and the European Union’s Horizon 2020 research and innovation programme (grant agreement No 824109 – EMP). X.L. and J.K. acknowledge financial support from the National Science Foundation (NSF MRSEC DMR-1720595) and the ARO (W911NF-17-1-0259). Q.S. acknowledges financial support from the NSF (DMR-1920740), the Robert A.Welch Foundation (C-1411), and the ARO (W911NF-14-1-0525), and hospitality of the University of California at Berkeley, the Aspen Center for Physics (NSF grant PHY-1607611), and the Los Alamos National Laboratory (via a Ulam Scholarship from the Center for Nonlinear Studies). This work has also been supported by an InterDisciplinary Excellence Award (IDEA) from Rice University (Q.S., E.R., J.K., S.P.)
    • …
    corecore