57 research outputs found
Recommended from our members
De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug.
Insects use a diverse array of specialized terpene metabolites as pheromones in intraspecific interactions. In contrast to plants and microbes, which employ enzymes called terpene synthases (TPSs) to synthesize terpene metabolites, limited information from few species is available about the enzymatic mechanisms underlying terpene pheromone biosynthesis in insects. Several stink bugs (Hemiptera: Pentatomidae), among them severe agricultural pests, release 15-carbon sesquiterpenes with a bisabolene skeleton as sex or aggregation pheromones. The harlequin bug, Murgantia histrionica, a specialist pest of crucifers, uses two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol as a male-released aggregation pheromone called murgantiol. We show that MhTPS (MhIDS-1), an enzyme unrelated to plant and microbial TPSs but with similarity to trans-isoprenyl diphosphate synthases (IDS) of the core terpene biosynthetic pathway, catalyzes the formation of (1S,6S,7R)-1,10-bisaboladien-1-ol (sesquipiperitol) as a terpene intermediate in murgantiol biosynthesis. Sesquipiperitol, a so-far-unknown compound in animals, also occurs in plants, indicating convergent evolution in the biosynthesis of this sesquiterpene. RNAi-mediated knockdown of MhTPS mRNA confirmed the role of MhTPS in murgantiol biosynthesis. MhTPS expression is highly specific to tissues lining the cuticle of the abdominal sternites of mature males. Phylogenetic analysis suggests that MhTPS is derived from a trans-IDS progenitor and diverged from bona fide trans-IDS proteins including MhIDS-2, which functions as an (E,E)-farnesyl diphosphate (FPP) synthase. Structure-guided mutagenesis revealed several residues critical to MhTPS and MhFPPS activity. The emergence of an IDS-like protein with TPS activity in M. histrionica demonstrates that de novo terpene biosynthesis evolved in the Hemiptera in an adaptation for intraspecific communication
Combining Private Set-Intersection with Secure Two-Party Computation
Private Set-Intersection (PSI) is one of the most popular and practically relevant secure two-party computation (2PC) tasks. Therefore, designing special-purpose PSI protocols (which are more efficient than generic 2PC solutions) is a very active line of research. In particular, a recent line of work has proposed PSI protocols based on oblivious transfer (OT) which, thanks to recent advances in OT-extension techniques, is nowadays a very cheap cryptographic building block.
Unfortunately, these protocols cannot be plugged into larger 2PC applications since in these protocols one party (by design) learns the output of the intersection. Therefore, it is not possible to perform secure post-processing of the output of the PSI protocol.
In this paper we propose a novel and efficient OT-based PSI protocol that produces an encrypted output that can therefore be later used as an input to other 2PC protocols. In particular, the protocol can be used in combination with all common approaches to 2PC including garbled circuits, secret sharing and homomorphic encryption. Thus, our protocol can be combined with the right 2PC techniques to achieve more efficient protocols for computations of the form for arbitrary functions
Scalable Private Set Union from Symmetric-Key Techniques
We present a new efficient protocol for computing private set union (PSU). Here two semi-honest parties, each holding a dataset of known size (or of a known upper bound), wish to compute the union of their sets without revealing anything else to either party. Our protocol is in the OT hybrid model. Beyond OT extension, it is fully based on symmetric-key primitives. We motivate the PSU primitive by its direct application to network security and other areas.
At the technical core of our PSU construction is the reverse private membership test RPMT protocol. In RPMT, the sender with input interacts with a receiver holding a set . As a result, the receiver learns (only) the bit indicating whether is in , while the sender learns nothing about the set . (Previous similar protocols provide output to the opposite party, hence the term reverse\u27\u27 private membership.) We believe our RPMT abstraction and constructions may be a building block in other applications as well.
We demonstrate the practicality of our proposed protocol with an implementation. For input sets of size and using a single thread, our protocol requires 238 seconds to securely compute the set union, regardless of the bit length of the items. Our protocol is amenable to parallelization. Increasing the number of threads from 1 to 32, our protocol requires only 13.1 seconds, a factor of improvement.
To the best of our knowledge, ours is the first protocol that reports on large-size experiments, makes code available, and avoids extensive use of computationally expensive public-key operations. (No PSU code is publicly available for prior work, and the only prior symmetric-key-based work reports on small experiments and focuses on the simpler 3-party, 1-corruption setting.)Our work improves reported PSU state of the art by factor up to for large instances
PSI from PaXoS: Fast, Malicious Private Set Intersection
We present a 2-party private set intersection (PSI) protocol which provides security against malicious participants, yet is almost as fast as the fastest known semi-honest PSI protocol of Kolesnikov et al. (CCS 2016).
Our protocol is based on a new approach for two-party PSI, which can be instantiated to provide security against either malicious or semi-honest adversaries. The protocol is unique in that the only difference between the semi-honest and malicious versions is an instantiation with different parameters for a linear error-correction code. It is also the first PSI protocol which is concretely efficient while having linear communication and security against malicious adversaries, while running in the OT-hybrid model (assuming a non-programmable random oracle).
State of the art semi-honest PSI protocols take advantage of cuckoo hashing, but it has proven a challenge to use cuckoo hashing for malicious security. Our protocol is the first to use cuckoo hashing for malicious-secure PSI. We do so via a new data structure, called a probe-and-XOR of strings (PaXoS), which may be of independent interest. This abstraction captures important properties of previous data structures, most notably garbled Bloom filters. While an encoding by a garbled Bloom filter is larger by a factor of than the original data, we describe a significantly improved PaXoS based on cuckoo hashing that achieves constant rate while being no worse in other relevant efficiency measures
Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest
Background
Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species’ feeding and habitat traits, defining potential targets for pest management strategies.
Results
Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys’ capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications.
Conclusions
Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls
Comprehensive transcriptome of the maize stalk borer, Busseola fusca, from multiple tissue types, developmental stages, and parasitoid wasp exposures
International audienc
Early Gnathostome Phylogeny Revisited: Multiple Method Consensus
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.A series of recent studies recovered consistent phylogenetic scenarios of jawed vertebrates, such as the paraphyly of placoderms with respect to crown gnathostomes, and antiarchs as the sister group of all other jawed vertebrates. However, some of the hylogenetic relationships within the group have remained controversial, such as the positions of Entelognathus, ptyctodontids, and the Guiyu-lineage that comprises Guiyu, Psarolepis and Achoania. The revision of the dataset in a recent study reveals a modified phylogenetic hypothesis, which shows that some of these phylogenetic conflicts were sourced from a few inadvertent miscodings. The interrelationships of early gnathostomes are addressed based on a combined new dataset with 103 taxa and 335 characters, which is the most comprehensive morphological dataset constructed to date. This dataset is investigated in a phylogenetic context using maximum parsimony (MP), Bayesian inference (BI) and maximum likelihood (ML) approaches in an attempt to explore the consensus and incongruence between the hypotheses of early gnathostome interrelationships recovered from different methods. Our findings consistently corroborate the paraphyly of placoderms, all `acanthodians' as a paraphyletic stem group of chondrichthyans, Entelognathus as a stem gnathostome, and the Guiyu-lineage as stem sarcopterygians. The incongruence using different methods is less significant than the consensus, and mainly relates to the positions of the placoderm Wuttagoonaspis, the stem chondrichthyan Ramirosuarezia, and the stem osteichthyan LophosteusÐthe taxa that are either poorly known or highly specialized in character complement. Given that the different performances of each phylogenetic approach, our study provides an empirical case that the multiple phylogenetic analyses of
morphological data are mutually complementary rather than redundant
- …